p W w—
111111

f e o e s — -
xxxxxxx
y ——

RICIS SYMPOSIUM:

(NASA-CR-187994) RICI5 SOFTWARE ENGINEERING
-~ THRY=-~

111111

90 SYMPOSIUM: AFROSPACE APPLICATIONS AND

RESEARCH DIRZCTIONS PRUCEEDINGS APPENDICES N31-22730

{Houstcn Univ.) 136 p CSCL 098 Unclas
63/61 00003563

Aerospace Applications &
Research Directions

November 7 & 8, 1990

RESEARCH INSTITUTE FOR COMPUTING AND INFORMATION SYSTEMS

Co-Sponsored by
University of Houston-Clear Lake

NASA/Johnson Space Center



)



PRl

Session 1

Lessons Learned in Software_
Engineering

Chair: Gary Raines, Manager, Avionics Systems
Development Office, NASA/JSC

Report from NASA Ada User's
Group

John R. Cobarruvias
Flight Data Systems Division, NASA/JSC



Johnson Space Canter

Flight Data
Systems Division

SUBJECT

3rd Annual
NASA Ada Users Symposium

TR
EK/John Cobarruvias

DATE
November 7, 1990

SYMPOSIUM STATUS

John R. Cobarruivas, Chairman
Flight Data Systems Division
NASA/JSC




NNASA | . NAME _
A' Johnsen Spece Center 3rd Annual EK/John Cobarruvias
Gl s,ﬂ'},’:‘&:{;m NASA Ada Users Symposium oam Pact

November 7, 1990 3

AGENDA

« History
* Goals
* « Evaluation ‘
» Detailed Symposium Agenda & Status

SUBJECT : NAME ‘
Johneon Space Center 3rd Annual EK/John Cobarruvias
Flight Data . NASA Ada Users Symposium DATE pace
Systems Division November 7, 1990 4
SYMPOSIUM HISTORY
» Started in 1988
+ GSFC Sponsored
» SEL Workshop

« JSC's Participation resulted in sponsoring 1990 at JSC
« Supported by MITRE and UH-CL




UeJECT NAME

Johnsen Saecs Canter 3rd Annual EK/John Cobarruvias
Sy Flight Data o NASA Ada Users Symposium ::'"mber . 1990 '“;

GOALS OF SYMPOSIUM

+ Recognize achievements and current projects at the various NASA centers
« Provide a forum to exchange ideas

» Provide a forund to share experience using Ada

« Encourage communications within the NASA Ada community

SUBJECT NAME

hi
Johnaon Space Conter 3rd Annual EK/Jo nCob;rruviu

Fu Dat DATE PAGE
Sy g:t m: l:lon NASA Ada Users Symposium November7, 1990 | 6

EVALUATION

« Achieved our goals

* 350 registered participants
. +~450 total attendance

o All centers represented

« Canadians

» Various universities

« Received over 40 papers

+ Excellent technical support




susJscT , NAME '
Jonnsen Spass Coniar 3rd Annual EK/John Cobarruvias
D
Sy Flight Data NASA Ada Users Symposium :;'Vember - 1090 ua;
EVALUATION (cont)

+ Qverall comments have been positive
- Moving the Symposium provides different perspective
- Allows other centers to participate
- Excellent center status reports
- Chairman did an excellent job
(should be a basis for a promotion)

’ susJecY NAME )
@ Johnson Space Canter 3rd Annual EK/John Cobarruvias
Fli DATE paaR
syl g:t &mion NASA Ada Users Symposium November 7,1990 | 8
EVALUATION (cont)
* MITRE
- Excellent technical support

- Understood need for a technical focus
- Paper selection and evaluation
- Overall session arrangement

« UH-CL
- Excellent logisitic support
- Overall arrangements
- I/F with MITRE




susJEcT NAME .
o Spase Conter 3rd Annuaj EK/John Cobarruvias
Flight Data : bare
SymughtData NASA Ada Users Symposium November 7. 1990 ’“‘;

DETAILED SYMPOSIUM AGENDA & STATUS

+ 5 Sessions/S NASA sites, 13 papers

+ NASA site status

« Object-oriented methods and simulation
+CM

» Distributed systems

» Reusability

« Al

NASN_ [~ |
EK/John Cobarruvias

Johnaen Spece Conter 3rd Annual
DATE

' S ium
sy .l:l.l:‘l:t g)l:ti:m NASA Ada Users Sympos No 71990

Paall
10

DETAILED SYMPOSIUM AGENDA & STATUS (cont)

* Key sbeakers :
+ Ralph Crafts (Ada Strategies

- Jack C. Heberlig/MITRE
- Excellent closing remarks by the chairman

» Reception




n Insn SUBJECT NAME
Jole:h u;o Conter 3rd Annual EK/John Cobarruvias
t ¢ A P
Sy e ision NASA Ada Users Symposium ';:ember 7, 1950 ‘°:1
NASA SITE STATUS
« Ada alive and well (could be better)
. JSC, GSFC, LaRC, LeRC, JPL
« Significant Ada Development
« No longer prototyping and research
» Scheduled delivery of Space Certified Ada S/W
SUSJECT NAME
Johnsen Space Canter 3l'd Annual EK/John Cobarruvias
Flight Data NASA Ada Users Symposium oATE ~ |PAcE
Systems Division November 7,1990 | 12
JSC
« SSE (Rational Initiative)
« Major Ada Initiatives
. « DMS
+ ITVE
«SIB
+ MSC

« TSC




Jehngan Spsse Conter

Flight Data
Systems Division

susJacr

3rd Annual
NASA Ada Users Symposium

NAME

EK/John Cobamxvlu

CATE . PAGE

November 7, 1990

13

GSFC

* Tremendous increase

+ 1985 5 Staff years
1990200 S.Y.

» Flight Telerobotic Servicer

« TDRSS
-+ EUVE Co-processor Flight Software

« HST
« Continued support of SEL

n I ns n SUBJECTY NAME .
Johnaon Spece Canter 3rd Annusl 7EKIJohn"('.V'Vo§fruviu
Flight D DATE PAGE
syl g:tm:mon NASA Ada Users Symposium November 7. 1990 | . 16
LaRC
» Currently 1 Branch using Ada
* 11 Projects

 Other Branches using Ada for prototypes
» Established a Software Engineering and Ada Lab (SEAL)
+ Sponsored 15 classes in 1 year
« Contractor supported




Johnson Space Center

Flight Data
Systems Division

SUBJECT

3rd Annual
NASA Ada Users Symposium

NAME

EK/John Cobarruviu

DATE

PAQE

November 7,1990 | 15
LeRC
« Significant increase
+» SSFP Projects (WP4)
. + Ada training a key factor
» Required additional training
Ry Sh [ -
f ) Johnson Space Canter 3rd Annual EK/John Cobarruvias
Flight Data NASA Ada Users Symposium DATE Pact
MY ) Systems Division November 7,1990 | 16

JPL

« Established Ada Development Lab
« Few systems using Ada

« 1 Flight System CRAF/CASSINI

« But...interest is growing

« Most problems directly related to cost of training

« Comprehensive training program with NASA funding is required




W\ susJcT NAME

Jehneen Spess Canter 3rd Annual EK/John Cobarruvias

Flight Data \ DATY
Systerss Divislon NASA Ada Users Symposium 7 1990 M;’
»

NASA ISSUES

+ 3 sites with software engineering and Ada labs
- GSFC SEL
-JPL ADL
- LaRC SEAL
* Training is currently site specific, site funded
» Requires an overall NASA initiative
» Documented in "Transition to Ada Plan"
» Excellent ideas, plans
« Looking to HQ to implement the plan
* All sites supportive and moving in the right direction

SUBJECT NAME

bn Cobarruvias
Johnaen Space Contar 3rd Annual EX/John Cobarru

Flight Dats NASA Ada Users Symposium oATa paaR
Systems Division ymp November 7, 1990 18

LUNCHEON SPEAKER

+ Ralph Crafts
« Editor, Ada Strategies
e Confirmed the NASA transition issue
+ Emphasize training
+ Highlighted Ada success stories
- Stealth Bomber
» Management support of Ada




Flight Data NASA Ada Users Symposium DATE PAat
Y ) Systems Division November 7, 1990 19

o N’\S’\ suBJECT NAME
ﬁ Johnaon Space Center 3rd Annual EK/John Cobarruvias

CONCLUSIONS

.+ Achieved our goals
+ Well received by the community
+ 1991 Symposium, LaRC
« Personal perception of Ada







ﬁ N91-22729
I

Software: Where We Are & What

is Required in the Future

Jerry Cohen
Boeing Aerospace and Electronics



High
Technology
Center.

Flight Critical Software: Current Status and Future Direction

Gerald C. Cohen
Boeing Aerospace & Electronics
High Technology Center

Octobar 31, 1990 0:34 AM HTCOO01

i



High

Technology
Center — — —
SOFING
The Programmers
ENVIRONMENT
High
Technology
Center—____ e
SOS/NG

e High integrity considerations

® Hard real-time constraints

e Implications of a still evolving systems architecture

® Need to meet delivery schedules with high productivity

e Evolving requirements & sbe’cifiéartirons

October 31, 1990 §:48 AM HTCGCC003



High

Technology
Center.
SOSING
RESULTS
s CASE 1
Technology
Center —
FOSING

e Triplex Digital Flight Control System

e Notsynchronized

® Analog backup

® Each computer samples sensors
independently, uses averages of
good channels



W
k]

High

Technology

Center

CASE 1

High

Flight

BOSING

® Asynchronous operation, skew, and sensor noise led
each channel to declare others failed

® Analog backup not selected

® No hardware failures had occurred

Technology

Center.

CASE 1

SOfING

Analysis

Failure traced to roll axis software switch

Sensor noise and a synchronous operation caused
one channel to take a different path through the
control lows

Fix was to vote software switch

Extensive simulation and testing performed

Next flight - same problem

- Although switch value was voted, unvoted value
was used




High
Technology
Center

High
Technology
Center.

Single failure in redundant uplink hardware
Software detected this - continued operation
Would not allow landing gear to be deployed

Aircraft landed with wheels retracted -
sustained little damage

Traced to timing change in the software that
had survived extensive testing '

SOTING

Saab Grippen Flight Test Program

Unstable aircraft

Triplex DFCS with analog backup

Yaw oscillations observed on several flights
Final flight had uncontrollable pitch oscillations

Crashed on landing

‘Traced to control laws

SOSING



High
Technology

Center
SO&SING

B-1B Defensive Avionics

e fundamental flaw in system architecture

November 5, 1990 2:47 PM HTCO11



High

Technology
Centerw
Present Day Problems
High
Technology
Center. - S — —
SOSING

e Requirements are incomplete

e Specifications are incomplete or inconsistent
® No way of proving specification satisfies requirements

e Implementation performed on host machine
- Norelationship to target machine
- Different operating systems on both machines
-~ No way to guarantee real time operation

@ Enormous cost overruns

o Latedelivery

November §, 1990 10:03 AM HTCO12A



High

Technology
Center - -
SOSING
e Software delivered does not behave as intended
e Validation and verification
- practically impossible for large programs
- state space explosion
® Testing procedures are ad-hoc
e No general architecture
e Different languages for different phases of life cycle
e High maintenance costs
November 2, 1990 11:12 AM MTCO13
High
Technology

SOSING

It appears that 60-70% of all
software problems are related to
requirements/specifications not
being complete or inconsistent



High

Technology
Center.
Present Day Tools
High
Technology
Center. e e—————————— e —

SOFT/ING

Case Tools
e Bubble charts (Yourdon, etc.)
e Data flow
e Control flow

® Bookeeping



High
Technology

Center ————— -

SOoOSING

They do not:
¢ perform reliability analysis
e perform architecture design
e perform componentdesign
e perform & produce trade studies
o perform testing
e produce test procedures

e perform configuration management

October 11, 1990 10:30 AM HTCO15

High
Technology
Center

AR A

FOSING

oThey do:

e Support functional decomposition

¢ Interfaces allocated to components

e Functionality derived from constraints and performance
Payoff:

® Interfaces defined between functions

® Behavior is'represented by functions

e Constraints influence behavior



High
Technology

Center__.___— R

BSOLS/NO

Overall Benefits
e Provides integrated requirements database
e Supports impact analysis
e Identifies and reduces risk

e Itsupposedly adds structure to the
requirements/specification phase

November 2, 1990 11: 14 AM NTCHGA



High
Technology

Center ———— -

SOSING

Analysis Tools
(reverse engineering)

Application 3 Language: ADA

Reduced graph of the called modulesof root

ORIGINAL PAGE IS
OF POOR QUALITY



High

Technology
Ce n wr—-—a " PR, _
SOSING

Calling Tree

® Reuse of modules

(in general doesn’t occur in hardware design
for a particular function)

® Shows complexity

e Real time analysis is a problem

Application : RECULS D DerecTion) ) :




High
Technology

Center______

SOLf/INC

Automatic Code Generators

e Caede
e Matrix

October 31, 1990 12:12 PM HTC022



REDUNDANT DATA BUS SCFTWARE

1r9gloryivereion - aglyern:§

m NET_M00E

——

Hade

— i_f}om
Mensigs
Srm—

S ey

Beai _PT

Source. Pl Basl_Hede
La{ - — Bw.eu

Addross
'Bau.m

REDUNDANT DATA BUS SOFTWARE

ORIGINAL PAGE IS
OF POOR QUALITY



Sample Ext.Inputs Ezt.Outputs Enable

Sampling Interval First
1. 15 17 Parent

0

2= -0¢ + WY

vl corr 1

temp
swl cmd 46 ol ¢l corr cad
a¢

D o M w

svld omd
oO— -t
QY::[ ,-c- r2 snnle mm
8‘: omd 1 swl cf corr lg m
Botuu ond “ sw) rf ocorx omd O m
elluo cand 1 owd corr omd
gqﬂ-’- cmd 1 vl cory
gpeimzemt | 1 [/ lv2 g corr
a«-‘u and !

unnF_N—-
19= 0.0
8!3 poe 1 10 sct NElve 1

apectpoe? | act igive
64
1
no

gclncl Poo & vd cort ’ 3 Ilrlla- 2o Y2= U2
QEE 10 Tt cott .@\1 i
w2 |“,_ y HD
o —

MATRIX /NPUT



High
Technology

Center___.__

SOSING

Future

High
Technology

Center_______i____ S EE—

SOFTING

e Need systems engineering approach

e Systems will be more integrated in the
future '

e Need better analysis between hardware &
software

November §, 1990 10:08 AM HTCOZ4



o A m | m M m
Network 2 }-.q—q—q—Lﬁ-.»—q—L-&-H—.r-ﬁ—r‘.-H-.L—v—H—r-H

Network 2 }::::;::::g-,_,_,l,.,_,_,_‘—-._.q—.-‘—y--\—m—v———-!

100 Hz SO Hz R R
- wll B &5
- ink Failure



High

MR

SOSING

November $, 1980 13: 12 AM  WTCO2S

Technology
Cen“r_ - — N S ———
e Need portability
e Standard interfaces
® Graphics
e Databases
High
Technology

e Common software architectures

® Exist for compilers & operating systems

e Does not exist for application software
(hardware years ahead in this regard)

SOSING



High
Technology

Center. S - -
SOSINO

e Gradual introduction of formal representation
for validation & verification

e Formal representation of requirements and specification

November 5, 1990 10: 16 AM HTCO27

High
Technology
Center

FSOSING

® English Requirements
Spiral Mode

a) If unstable, the spiral mode time to double amplitude shall
be no less than 20 seconds at speed from 1.2 VS1 to VFCU/MFC
(Conventional control)

b) The airplane characteristics shall not exhibit coupled roll-
spiral mode in response to the pilot roll commands

¢) Minimum acceptable: the spiral mode time to double
amplitude shall be greater than 4 seconds

Novembaer 3, 1990 4:02 P HTCDAY



High

Center

Technology
aem—

NOSING

® Formal statement of “Spiral Mode” requirements:

a) if Aircraft.State s Unstable then
if Aircraft.State.Mode = “Spiral” and Aircraft.State.Time = tand

Aircraft.State.Amplitude = a and
1.2 * VS1 $<$ = aircraft.state.speed $<$ = VFCUMFC then

existst$<$ = t1$<$= t+20 : Aircraft.State. Amplitude = 2*a

b) module PilotCommand

operation RollControl
postcondition: Aircraft.State.Mode ~ = “CoupledRollSpiral®

end RollControl

c) forall s in Aircraft.State :
if s.Mode = “Spiral” and s.Time = tand s.Amplitude = a

forallt$<$= t1 $<S=t+4:
if s.Time = t1 then s.Amplitude$<$ 2 * a

High

November §, 1990 4:08 PM HTCO42

Technology

Benefits

SOFTING

e Can prove that specifications satisfy requirements

® Can prove various properties of specifications

e traceability
e generate test cases

e Can execute specifications (i.e. OBJ)
e reasoning about changes



. ‘High

Technology
Center_——.—..ﬁ L _—
FOSING
® Need formal verification of software

(10-20 years)

® Actual software

e Formal proof of automatic code generator
High
Technology

Center — - -

SOST/ING

® Need high order language
e OBJ

e shorter programs

e nodifference between specification
and programming language

° reuseabrle code

e decisions tend to be localized

November 3, 1990 10:40 AM HTCO33



High . r

Technology
Center — ——
. . . pu . SOSING
Detailed View of a Verification System
. Designer
specs \ . /7~ program
Syntax of program .
language Verification Semantics of
rmemmewe=====-p{ condition <
and specification generator program language
language
l Verification
conditions
Lemmas
—_—
Hints Mechanical Theorem Prover Sem'ac'\tits. of
specification
Inductive language

assertions

v\

proved unproved counter
example

November §, 1990 2:48 PW HTCDA4

High
Technology

CQDtEl‘———_—» - —

SOSING

o Subset of Fortran
] Subset of Pascal
® Subset of Ada

e Subset of “C"

o Gypsy

Novembar §, 1990 2:48 P HTCDA3



High
Technology
Center

SOSING

A Growing Fear

High
Technology

Center e — - —

SOEINO

“Red Paper”
Bill Totten
President of K.K. Ashisuto
“The Largest Distributor of Independent
Software Products in Japan”.

Octobar 31, 1990 12:12PM HTCO3E



High
Technology

“| pelieve that the United States is in danger of abandoning another
vital industry to Japan. This is the computer industry; both computer
hardware and computer software. '

| see the same pattern of abandonment and surrender now beginning
in computers that has occurred before in such industries as
motorcycles, automobiles, consumer electronics, office equipment
and semiconductors.”

High
Technology

SOLSING

“Japan’s electronics industry is the worlds best and largest because itis
the most competitive. Itis competitive because itis based on standards
rather than on proprietary products. standards make it easy for new
competitors to enter the industry and make it easy for customers to

switch from one competitor’s product to another. The competition
stimulates new ideas for products and new ways to manufacture them

more efficiently.”

Nevember 1, 1990 11:32 AM HTCO3S



‘High
Technology
Center —

SOLS/ING
“Japanese software products are starting to beat American
software products in Japan for the following reasons:

1. They are comparable in functional capability to the best
American products.

2. They are of much higher quali-ty than American software

3. 3-to-1 productivity advantage over the United States in
software development

4. 20:1to 200:1 quality advantage

5. Japanese emphasize management and process; US tends to
emphasize technology (looking for the “silver bullet”).

6. Japanese software managers stay technically up-to-date,
and strive to understand software development ata
detailed technical level; US managers appear more
financially oriented.”

November 5, 1990 10:42 AM HTC03I9

High
Technology
Center

SOSING

“End Result:

e Quality figures are quoted for Japanese software of 8
defects per 1 million lines of released software - this is
recording all problems, not just customer - reported
defects

e IBM Japan produces software which has an order of
ma nieudepfewer defects than that produced by IBM US

and IBM France

e The low end of Japanese software.pro“ductivity is at the
high end of US companies production






Managing Real-Time Ada

Carol A. Mattax
Hughes Aircraft Corp., Radar Systems Group



MANAGING REAL-TIME Ada
(A COMMON-SENSE APPROACH)

RICIS '90

HUGHES CA MATTAX, MANAGER
SOFTWARE DESIGN & DEVELOPMENT
PROCESSOR DIVISION

RADAR SYSTEMS GROUP




MANAGING REAL-TIME Ada

. AdIaT'OEFSFERS THE ABILITY TO IMPROVE SOFTWARE PRODUCTS IN THE
uIL ": N

« RELIABILITY

«  MAINTAINABILITY

+ PORTABILITY

« SUPPORTABILITY
QUALITY

. THIS PRESENTATION WILL FOCUS ON THE MANAGEMENT PROCESS
RATHER THAN THE TECHNICAL MERIT OF THE PRODUCTS

. PRODUCT IMPROVEMENT BY THE USE OF Ada IS ASSUMED INHERENT |
IN CHOOSING AND USING THE LANGUAGE

MANAGING REAL-TIME Ada HUGHES

- THE REAL-TIME SOFTWARE UNDER DISCUSSION IS EMBEDDED
OPERATING SYSTEMS FOR HUGHES MODULAR PROCESSORS,
AVIONICS COMPUTERS SUPPORTING MULTI-SENSOR DATA AND

" SIGNAL PROCESSING

- DATA PROCESSING TARGETEb TO INTEL i80960 32-BIT JIAWG
STANDARD

« HARD REAL-TIME CONSTRAINTS

- PERFORMANCE REQUIREMENTS DEFINED AT HIGH LEVEL THEN
ALLOCATED DOWN AS TIMING "BUDGETS"

. OPERATING SYSTEM "BUDGET" DEPENDS ON APPLICATION USAGE;
DIFFICULT TO ACCURATELY QUANTIFY

« EVEN WITH WELL-DEFINED TIMING CONSTRAINTS, IT'S NEVER FAST
ENOUGH! EVERY MICROSECOND SAVED REPRESENTS POTENTIAL
ADDED FUNCTIONALITY



MANAGING REAL-TIME Ada

« THE TRADITIONAL RESPONSE TO HARD REAL-TIME CO
Eizg%lﬁéléY IN AN EMBEDDED OPERATING SYSTEM, ISNiggEAIlANBI%

« THE HUGHES MODULAR PROCESSOR OPERATING SYSTEM IS
WRITTEN IN Ada

« FIRST GENERATION IN Ada DUE TO DoD MANDATE

» SUBSEQUENT GENERATIONS IN Ada DUE TO BENEFITS IN PR
AND PRODUCT OCESS

« TRANSITIONING FROM ASSEMBLY LANGUAGE TO Ada IS NOT EASY
« FIRST GENERATION USED "BRUTE FORCE" APPROACH

+ IN SUBSEQUENT GENERATIONS, MANAGEMENT PROCESS
TAILORED TO LEVERAGE OFF Ada

CONSEQUENCES OF "BRUTE FORCE"
APPROACH TO Ada

- COMPILER PERFORMANCE WAS MUCH WORSE THAN EXPECTED,
ESPECIALLY USING CERTAIN CONSTRUCTS

« REAL-TIME PERFORMANCE WAS SIGNIFICANTLY DEGRADED

+ RUN-TIME SYSTEM FUNCTIONALITY AND PERFORMANCE WERE
INSUFFICIENT FOR REAL-TIME DEMANDS

« LEARNING CURVE FOR Ada HAS TO BE FACTORED IN
- BAD FORTRAN CAN BE WRITTEN IN ANY LANGUAGE

- SUBSTANTIAL OPTIMIZATION WAS REQUIRED TO ACHIEVE
PERFORMANCE GOALS

.« INITIAL RELEASE WAS 3 TO 10 TIMES TOO SLOW

BRUTE FORCE APPROACH WORKS BUT IS PAINFUL AND INEFFICIENT

e ————



PROCESS FOR Ada:

TAILORING THE MANAGEMENT
IUGHES
REQUIREMENTS

« ALLOCATING PERFORMANCE REQUIREMENTS TO DETAILED TIMING
BUDGETS IS A CRITICAL ACTIVITY IN SPECIFYING REQUIREMENTS FOR
REAL-TIME SYSTEMS

» TO ALLOCATE TIMING REQUIREMENTS, THE PERFORMANCE OF
COMPILED CODE MUST BE KNOWN, BUT TYPICALLY ONLY AVERAGE
E:E.?JS_PMANCE OVER A NARROW SET OF BENCHMARKS IS KNOWN,

- COMPILER EVALUATION AND BENCHMARKING IS REQUIRED PRIOR TO
OR DURING THE REQUIREMENTS PHASE

« EVALUATION CRITERIA INCLUDE EFFICIENCY, CODE EXPANSION,
ROBUSTNESS, IDIOSYNCRACIES IN IMPLEMENTATION OF Ada, ETC.

- VARIETY OF BENCHMARKS ARE USED:
- STANDARD PIWG, ETC.

« BENCHMARKS REPRESENTATIVE OF THE REAL-TIME
APPLICATION AND/OR THE MOST SEVERE CONSTRAINTS

TAILORING THE MANAGEMENT UGHES
PROCESS FOR Ada:
DESIGN

. ONE OF THE BENEFITS OF Ada IS MOVING DEVELOPMENT ACTIVITIES
FROM INTEGRATION TIME TO DESIGN TIME

. USE PACKAGE SPECS TO DEFINE CSC'S AND TO UNAMBIGUOUSLY
DEFINE INTERFACES '

. TEST AT DESIGN TIME BY COMPILATION RATHER THAN AT
INTEGRATION TIME BY TESTING AND REWORK

« CONFIGURE PACKAGE SPECS EARLY

. FLOW DOWN TIMING BUDGETS AND IDENTIFY CRITICAL
COMPONENTS

. RAPID PROTOTYPING SELECTED CRITICAL AREAS PROVIDES
EARLY MEASURE OF WHETHER TIMING BUDGETS ARE
ACHIEVABLE AS WELL AS VALIDATION OF BENCHMARK RESULTS

. REWORK AND REALLOCATION OF TIMING IS THUS POSSIBLE
MUCH EARLIER IN THE DEVELOPMENT CYCLE



TAILORING THE MANAGEMENT —
PROCESS FOR Ada: UGHL S
DESIGN (CONTD.) -

T B P A T L Lo AW RS
PRODUCT IS BETTER. ’ EWORK, AND THE

« ESPECIALLY IN REAL-TIME SYSTEMS, WHERE THERE IS A LEGITIMATE
FEAR THAT THE SYSTEM WILL FAIL TO MEET REAL-TIME CONSTRAINTS,
THERE'S A PUSH TO GET TO THE LAB AS SOON AS POSSIBLE TO SEE
HOW BAD PERFORMANCE IS.

. TAILORING THE PROCESS TO SUPPORT Ada FORCES MORE TIME TO BE
SPENT IN DESIGN

« CORRESPONDING SUCCESS IN INTEGRATION HAS BEEN ACHIEVED

. THE FEAR IS STILL THERE. GETTING AN EARLY HANDLE ON TIMING AS
DESCRIBED ABOVE HELPS MITIGATE SOMEWHAT, BUT THE FEAR
NEEDS TO BE MANAGED AS WELL

TAILORING THE MANAGEMENT " -
PROCE%% I';'I%R Ada:

THE DISTINCTION BETWEEN DESIGN AND CODE IS BLURRED WITH Ada,
ESPECIALLY IF Ada CONSTRUCTS AND Ada AS POL ARE USED TO ,
' DESCRIBE THE DESIGN. NONETHELESS, THERE'S A CODING JOB TO DO.

FOR A TYPICAL REAL-TIME SYSTEM, WHERE EVERY INCREASE IN
PROCESSOR OR COMPILER PERFORMANCE REPRESENTS MORE
;ggg{lg&uurv , THE NON-DETERMINISTIC FEATURES OF Ada ARE A

. WE STATICALLY ALLOCATE MEMORY, DO NOT USE RUN-TIME
ELABORATION OR RENDEZVOUS, ETC. IN THE OPERATING SYSTEM

IN ADDITION, FOR A GIVEN TARGET AND COMPILER, CERTAIN Ada
CONTRUCTS MAY BE TOO SLOW FOR EFFICIENT REAL-TIME
PERFORMANCE. SUCH CONSTRUCTS ARE IDENTIFIED DURING THE
BENCHMARKING PROCESS

ALL SUCH RESTRICTIONS ARE DOCUMENTED IN THE CODING STANDARD
OR GUIDELINE



INTEGRATION

« PLAN IN TIME DURING THE INTEGRATION PHASE FOR OPTIMIZATION
« IT WON'T BE FAST ENOUGH!

+ DEVELOP TOOLS TO TIME AND BENCHMARK SYSTEM PERFORMANCE
PRIOR TO INTEGRATION

+ FOLKLORE AS TO WHERE THE TIME GOES IS OFTEN WRONG
+ SOMETIMES POOR PERFORMANCE IS DUE TO A CODING ERROR

+ BENCHMARK AND DOCUMENT PERFORMANCE WITH EVERY SIGNIFICANT
REBUILD TO AVOID TIMING BUILD-UP AGAIN

- AVOID THE TEMPTATION TO USE ASSEMBLY LANGUAGE EXCEPT WHEN
IT'S REALLY THE LAST RESORT

- CAN COVER UP ERRORS, POOR DESIGN, OR POOR IMPLEMENTATION
WHICH COULD HAVE BEEN CORRECTED USING Ada

TAILORING THE MANAGEMENT ‘
PROCESS FOR ADA:
DOCUMENTATION

« DOCUMENTATION IS A SIGNIFICANT SOFTWARE DEVELOPMENT ACTIVITY
FOR DoD SYSTEMS

« THE DOCUMENTATION PROCESS AND PRODUCT CAN BE SIGNIFICANTLY
IMPROVED BY LEVERAGING OFF Ada:

« IRS & IDD: USE Ada PACKAGE SPECS AUGMENTED BY COMMENTS

. USER'S MANUAL, AT LEAST FOR OPERATING SYSTEMS: START WITH
ggﬁ?lﬁBEEcS WITH COMMENTS AND AMPLIFY AS DEVELOPMENT

« DESIGN DOCUMENTATION: USE PACKAGE SPECS AND Ada AS PDL;
SUPPLEMENT WITH DATA FLOWS, ETC.

+ AS-BUILT DOCUMENTATION: REVERSE ENGINEER FROM THE CODE TO
ENSURE ACCURACY; SUPPLEMENT AS NEEDED



B —

HUGHL. G

MANAGING REAL-TIME Ada

- Ada AND REAL-TIME ARE NOT INCOMPATIBLE, BUT GREAT CARE MUS)
BE TAKEN TO:

» UNDERSTAND THE COMPILER PERFORMANCE
. MANAGE THE DEVELOPMENT PROCESS TO LEVERAGE OFF Ada

« MANAGE THE FEAR OF NONPERFORMANCE TO HARD REAL-TIME
REQUIREMENTS



Session 2

Software Engineering Activities
at SEI

Chair: Clyde Chittister, Program Director of Software
Systems, Software Engineering Institute,
Carnegie Mellon University



Caragie Melion University
Software Engineering Institute

Software Systems Program
November 8, 1990
RICIS "90"

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense



Carnegis Mallon Universlty
i Software Engineering institute

SEI Mission

Provide leadership in advancing the
state-of-the-practice of software engineering
to improve the quality of systems that depend
on software.

Carnagie Mellon University
Software Englnooﬂng Institute

Technology
Flow Paths

Purpose:

To facilitate a
higher quality
communication




Camegis Mefion Universily

Software Engineering Institute

Software Systems Program Objective

Assist the MCCR community in improving the way
software is developed for real-time distributed

systems
. integrate software and systems engineering
. increase the effective use of technology

- Ada

- design methods

- common architectures

- scheduling algorithms

. Reduce the risk of adopting new technology

i Camegie Maiion University
Software Engjieerirlllnstitme

Strategy

Identify and select key technical Issues to Investigate.
Select application domains in which to work.

Establish relationships with Influential customers and
vendors in these domains.

Evaluate and prototype potential solutions to selected
technical problems.

Conduct proof-of-concept experiments in selected
application domains.

Facilitate the Introduction of these concepts into
practice.



Carmnegie Msilon Universty
Software Engineering Institute

Software Systems Projects

Rate Monotonic Analysis for Real-Time Systems
Software for Heterogeneous Machines |

User Interface - SERPENT

Real-Time Embedded Systems Testbed
Systems Fault Tolerance (proposed)

Real-Time Data Management (potential)






User Interface Development
Serpent UIMS

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense



s 3

&

Camagia Melon Uriversity
Software Engineering Institute

Introduction

Problems

Objectives

Approach

Serpent Architecture

Serpent Editor
Outside Efforts

Status

Camagie Melion University
Sottware Engineering Institute

User Interface (Ul) Problems

« User interface accounts for large portion of life
cycle costs

 Impacts all aspects of the life cycle

- requirements
- development
- sustaining engineering



Camaegis Meilon University
Software Engineering Institute

Life Cycle Problems

e Requirements

- evolutionary, not well specified
- written specifications inadequate
- customers may not know what is practical

¢ Design/implementation

- very labor intensive
- inadequate existing methods and tools

o After system completed

- frequent and complex changes required
- difficult to take advantage of new I/0 media

90-Serpent-reed-3

Camegie Melion University
Software Engineering Institute

Objectives

o Make user interfaces easier to specify

o Support incremental development of user
interfaces (prototypes)

» Provide for a "bridge" between prototype and
production versions of system

" e Support insertion of new I/0 media during
sustaining engineering



Camaegis Mellon University
Software Engineering institute

Approach to Reducing Ul Problems

» Provide single tool which supports incremental
specification and execution of interface

» Separate concern of user interface specification
and execution from rest of system concerns

* Apply non-procedural language and graphical
techniques to user interface specification

$90-Serpent-reed-5

Camegie Melion University
Software Engineering institute

Serpent UIMS
o Has specialized language for user interface
specification

Supports I/0O media independent applications

Supports both prototyping and production

Supports multiple /0 media for user interactions

Supports ease of insertion of new I/O media



i Camegie Medon University
Software Engineering institute

Serpent Architecture

Application
layer

D alogue
1ay0

|

X
window
system

i Hp
L

m‘

u;im i
i
] e .
fit

sl

i
i

i

!

90-Serpent-reed-7

i Camaegie Melion University
Software Engineering Institute
Slang, Ul Specification Language

o Based on production model

- data driven
- allows multiple threads of control

e Provides multiple views of the same data

- implemented with constraint mechanism

- re-evaluates dependent values automatically
when independent values modified

- applies to application values, /O media display
values, and local variables

90-Serpent-reed-8



i Camegie Melon Uriversty
Software Engineering Institute

Prototyping

« Detailed knowledge of Serpent dialogue model is
not required

o Application not required
o Slang allows definition of local data
o Serpent automatically enforces constraints

o Reasonably sophisticated prototypes can be-.
generated, e.g., visual programming

90-Serpent-reed-9

i Camegie Mellon University
Software Engineering Institute

Input/Output Media

o Serpent designed to simplify the integration of /0
media

e Currently Integrated

- digital mapping system
- X11 Athena widget set

o Integrations anticipated/in progress

- Motif
- Open Look

§0-Serpent-reed-10



Camegie Meilan University
Software Engineering Institute

Application
Can be written in C or Ada

Views Serpent as similar to database management
system

Creates, deletes, or modifies data records

Informed of creation, deletion, or modification of
data records by dialogue layer ~

90-Serpent-reed-11

Camaegie Melion University
Software Engineering Institute

Serpent Editor

Layouts of user interface are best specnﬂed or
examined graphically

Logic, dependencies, and calculations are best
specified textually

Serpent Editor has two portions

- graphical part for examination and specification
of layout

- structure part for textual specification

Implemented using Serpent

90-Sevpent-reed-12



i Carmagie Medon University
Software Enginesring Institute

Outside Efforts -- ARMY TO&P

e FATDS/CECOM - on contract
- Port Serpent to ATCCS CHS

- Install Serpent at Center for Software
Engineering

- Technical support to Magnavox

o FAAD - preliminary negotiations underway
- Technical support to TRW

90-Serpent-reed-13

i Camegie Mellon University
Software Engineering institute

Outside Efforts -- Standardization Work

o |IEEE P1201.3

e OSF

o Unix International

e UIMS Working Group

90-Serpent-reed-14



i Camegie Madon University
Software Engineering Institute

Outside Efforts -- Commercialization

o Dedicated Company
¢ Consortium.

e Multiple H/'W and/or S/W vendors

90-Serpent-reed-15

i Camagle Malion University
Software Engineering Institute

Status

 Serpent (with visual portion of editor) in alpha test

« Supported for Sun, VAX (Ultrix), DECStation, HP
(HPUX)

« Beta version of Serpent (including complete editor)
available 4QCY90

$0-Serpent-reed-18






Session 3

Software Reuse
Chair: Robert Angier, /IBM Corp.






Session 3 10:15 - 11:45 a.m. Nov. 8

Research Directions in Software Reuse

November 8, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, NY 13827
(607) 751-2169
net: OWEGO@IBM.COM

Unclassified






Where Does Reuse Start?

Will Tracz

MD 0210
IBM System Integration Division
Owego, N.Y. 13827
OWEGO@IBM.COM or TRACZ@S/SMRA.STANFORD.EDU

Preface

The following is a transcript of the keynote address
for the Reuse in Practice Workshop sponsored by
IDA, SEI and SIGADA. The workshop was held in
Pittsburgh, PA at the Software Engineering Institute,
July 11-13th, 1989. The goal of this talk was to estab-
lish some common vocabulary and to paint a broad
picture of the issues related to software reuse.

Overview

Software reuse is the type of thing some people swear
by. It is also the type of thing that some people swear
at. Software reuse is a religion, a religion that all of us
here today pretty much have acccpted and embraced.
The goal of this talk is to question the foundation of
our faith - to test the depth of our convictions with
the hope of shedding new light on our intuitions. [
do not claim to have experienced divine intervention.
You don’t need to take what I say as gospel truth. I
believe in what [ say, but what you hear may be
something different. Again, let me encourage you to
disagree - to challenge the position 1 have taken on
the issues 1 will be presenting. Before I proceed
further, I need to qualify software reuse by providing a
definition.

Software reuse, to me, is the process of reusing soft-
ware that was designed to be reused. Software reuse is
distinct from software salvaging, that is reusing soft-
ware that was not designed to be reused. Further-
more,. software reuse is distinct from carrying-over
code, that is reusing code from one version of an
application to another. To summarize, reusable soft-
ware is software that was designed to be reused. The
major portion of my talk will focus on examining the
rhetorical question, “Where does reuse start?”

fFh b i

Introduction

If I were to ask you, "Where does reuse start?”, your
reply might be, "What do you mean? That seems like
a pretty vague and nebulous question!”

I agree, so | have done a little top-down stepwise
refinement and broken the question up to focus on
three areas - the three P’s of software reuse: product,
or what do we reuse, process, or when do we apply
reuse, and finally personnel, or who makes reuse
happen. I guess I could have called it the three W's
of reuse: what, when, and who.

“"Why is this an important question?” you might ask.
The first answer that comes to my mind is that if you
would like to build a tool to help reuse software, it
would be reasonable to know: 1) what you were
trying to reuse, 2) when you would be doing it, and 3)
who would be using it. That is one reason, a pretty
good reason, but not the only reason for asking the
question “Where does reusc stant? Rhetorically, if
one could understand the ramifications, implications
and economic justifications of the answer to the on-
ginal question, “Where does reuse start?”, one would
better be able to answer the question “Where should
reuse start?”” and “What needs to be done to make it
happen?” This is the real question I think we are here
to answer.

Product

If one examines the question of “Where does reuse
start?” by focussing on the products being reused, one
could ask “Does reuse start with code?” There is no
denying that software reuse generally ends with “code”.
But, this still is a pretty broad statement. After all,
code could be source code, object code, a high level
language statement, a function, a procedure, a
package, a module, or an entire program. The issue
raised then is “What is the granularity of the code that
you want to reuse? The larger the granularity, the
larger the “win” is in productivity. The overhead for
finding, understanding and integrating a reusable soft-
ware component necds to be less than designing and

ORIGINAL PAGE IS
OF POOR QUALITY



writing the code from scratch. This supports the
argument for the reuse of higher granularity objects
such as software packages, modules or classes.

Just as we could debate the granularity of the object
being reused, one could argue about the level of
abstraction that is being manipulated. Does reuse
start with a design? A design is a higher level
abstraction compared to an implementation. Let me
emphasize that the advantage of starting reuse from a
design is that a design is at a higher level of
abstraction than an implementation. Or, in other
words, a design has less implementation details that
constrain its applicability.

This brings out a point made in a recent paper | have
been writing called “Software Reuse Rules of
Thumb”. In it | propose two general rules of thumb
for software reuse: 1) to separate context from
content and concept, and 2) to factor out common-
ality, or to rephrase this second rule a bit, to isolate
change. If one applies the first rule of thumb, a
program design, say at the detailed logic level, should
have absent some (but not all) of the contextual infor-
mation that will be supplied at implementation time.
That is, the implementation issues, such as specific
operating system or hardware dependencies, are
neither part of the content, which is the algorithm or
data flow nor part of the concept, which is the func-
tional specification. I will address the second rule of
thumb, factoring out commonality, later.

Before proceeding, | would like to emphasize the
importance of representation, especially from a tool
perspective. Remember | stated earlier that one of the
reasons for looking for an answer to the question of
“Where does reuse start? was to provide a rational
for building tools to assist in the reuse process. This
implies that we would like a machine manipulable
reusable design representation. This is not easy! But,
I believe the state of the art is now evolving to a point
where there are results of software reuse starting from
design. The projects, that | am aware of, have been at
MCC, with the DESIRE system, and at Toshiba,
where in the 50 Steps per Module system, they are
working on an expert system to automatically generate
C, FORTRAN or Ada from low-level design data-
flow charts. Furthermore, they claim success in
reverse engineering existing software by synthesizing
data-flow diagrams for potential reuse.

Continuing our analysis of the question “Where does
reuse start?”, could reuse start with a program’s spec-
ification? By specification, I a statement of
“what” a program need’s to do, not “how” it is sup-
posed to do it. There is a simple answer, yes, in
limited contexts, program specifications can be reus-
able. But research in automatic programming tells us

that this is a hard problem to extrapolate outside of
narrow domains.

Speaking from personal experience, we at IBM in
Owego have developed some reusable avionics specifi-
cations. When [ say specifications, I mean
MIL-STD-2167 System Requirements Specifications
(SRS). They are highly parameterized documents full
of empty tables and missing parameter values. The
systems analyst, in effect, programs a new module by
specifying the values in the tables of the SRS docu-
ment. An application generator then reads the docu-
ment and builds the data structures necessary to drive
the supporting software.

Completing the waterfall model, we can ask the ques-
tion on whether reuse can start with a problem defi-
nition (requirements). This is an interesting question.
One might ask how? One could reason that if the
same requirements can be identified as being satisfied
by certain previously developed modules, then clearly
those modules are candidates for reuse. Well that is a
big if. It is significantly dependent on the traceability
of requirements to specifications, the traceability of
specifications to design, and the traceability of design
into code and, also into test cases, and documentation.

Here is where a hypertext system’s information web is
ideal for linking these artifacts together. With a
hypertext system, you can walk the beaten path to
find out what code to reuse. But, there is a catch. As
Ted Biggerstaff has repeatedly stated, there is no free
lunch. You have to pre-engineer the artifacts to fit
into the network, and spend the time and effort to
create the links. Finally you need to somehow sepa-
rate the context of the objects from the content. One
mechanism for achieving this goal is through
parameterization. Parameterization is a way to extend
the domain of applicability of reusable software.
Parameterization allows a single module to be general-
ized over a set of solutions.

To summarize, the issue we have been exploring
related to the question of “Where does reuse start?” is
really the question “What software artifact does reuse
start with?” Part of the answer lies in the fact that we
know that software reuse generally ends with the reuse
of code. Where it starts depends on: 1) how much
effort we want to place in developing the reusable
artifact that we want to begin with, 2) how effectively
we can link it to an implementation, and 3) (maybe
not so obvious) how effectively we generalize the
implementation.

There is a fourth dependency having to do with the
process of software reuse. This is topic I will address
subsequently. First I would like to reflect on the gen-
eralization issue of an implementation. One must rec-



ognize that as we progress down the waterfall model,
from requirements to implementation, each artifact
adds more detail. An implementation is one
instantiation of a design. There could be several
implementations of a design just as there could be
several designs that satisfy a specification but that
have different performance and resource attributes.
The key is factoring out the commonality by sepa-
rating the context from the concept and content. The
concept becomes the functional specification. The
content becomes a template or generic object. The
context becomes possible instantiation parameters.
We have identified some of the dimensions and impli-
cations related to which software artifact to start reuse
with. [ have concluded that code is a safe place to
start and is, in most cases, the place one ends up. 1|
also have mentioned that hypertext is the way to
establish the traceability between requirements, spec-
ification, design, tests and implementation.

Process

- Turning to the software development process, one
could observe that most software reuse starts at the
implementation phase. One could modify the software
development process to include a step where, at
implementation time, one would look for existing
software to save having to write new code that would
do the same thing. With a little luck, this usually
works. But with a little foresight, this usually works
better. How ofien is it the case that the code one
“wants to reuse has to be modified because either it
was not implemented to exactly fit the new context it
is being reused in, or it was not implemented to
provide a parameter for adapting it to a different
context, or the design was such that it placed unneces-
sary constraints on the implementation? If the soft-
ware designer had not placed the (somewhat) arbitrary
design constraints, then the implementation could be
used as is.

Therefore, with a little foresight, reuse might better
start at design time. The implementer could then lev-
erage off the functionality of existing implementations.
This is where the bottom-up aspect of reuse meets the
top-down functional decomposition aspect of most
design processes. One could argue that object-
oriented design would eliminate this problem. Let me
say that object-oriented design helps reduce the
problem of the design not meeting the implementa-
tion, but parameterization still is the key for control-
ling this process.

One could just as easily extend the same argument for
looking for reuse opportunities at design time, for the
same reasons, to the specification and requirements

analysis phases of the software life cycle. Again, by
identifying earlier on in the software development life
cycle, what is available to be reused, trade-offs can
made in the specifications, or designs can be tailored
to leverage off the existing software base.

Let me now_infroduce somewhat of a new phase in
the traditional waterfall model that has been added
explicitly to support software reuse. [ define domain
analysis to be a generalization of requirements analysis
- instead of analyzing the requirements for a specific
application, the requirements of a generic application
are quantified over a domain. Applying my two rules
of thumb: commonality is factored out and context is
separated from concept and content.  Reusable
objects are identified, and their context defined.

If one recognizes that the software development life
cycle needs to be modified in order to inject software
reuse technology, then, relating to personal experience,
reuse opportunities and potential can be identified -at
code review time, or at design review time. If one
looks at the Programming Process Architecture used
in IBM, one can see these criteria called out as being
integral parts of the inspection process.

But then again, instead of reuse being addressed
during the software development effort, maybe reuse
could start as an after thought (project follow-on).
After one pass through the software development life
cycle, the second time through one can begin to see
the commonality between applications. Quoting Ted
Biggerstaff's rules of three “If you have not built three
real systems in a particular domain, you are unlikely
to be able to derive the necessary details of the
domain required for successful reuse in that domain.”

As a side point, there is a second rule of three.
“Before you can reap the benefits of reuse, you need
to reuse it three times.” The empirical evidence | have
seen to date bear this out.

A better choice for where reuse should start is at the
beginning of a project (project start up). Here, the
software development process can be defined, reusable
software libraries can be set up and standards as well
as tools developed.

To share with you again my personal experience, in
one large Ada project, A Computer Integrated Manu-
facturing (CIM) effort involving 3SOK SLOCS, the
project had a PRL - Project Reuse Lead. He was
responsible for sitting in on all design and specifica-
tion reviews to identify commonality between subsys-
tems and support the communication and application
of reuse technology. Because of software reuse, fac-
toring out commonality, the size and development
effort of the project was reduced by over 20%. This

ORIGINAL PAGE IS
OF POOR QUALITY



is a successful example of where reuse started at the
beginning of a project.

But, then again, maybe reuse could start at the end of
a project (project wrap-up). | am reminded of the
General Dynamics approach for developing reusable
software related to an early version of the DARTS
system. Here, after a project was completed, and
before the design and development team was assigned
to a new project, they locked everyone up in a room
and wouldn’t let them out until they developed an
archetype of the system. That is, they recorded how
and what to modify in the system so that it could be
reused in the future.

While this is one approach for developing reusable
software, it scems like putting the cart in front of the
horse. But, then again, it is reasonable, upon the
completion of any project to identify likely compo-
nents to add to a reuse library.

Finally, we are all in this for the bottom line. Let me
state my version of the Japanese software factory’s
motto: “Ask not what you can do for your software,
but what your software can do for you.” It makes
sense, dollars and cents, to capitalize on existing soft-
ware resources and expertise. But, you need to
develop a business case to justify the additional cost of
developing reusable software.

To summarize, the issue we have just explored related
to the question of “Where does reuse start?” is really
the question “Where in the software development life
cycle does reuse start?” Where it starts depends on 1)
how one modifies the software development process
to identify opportunities for reuse, and 2) how one
cither modifies or extends the software life cycle to
identify objects to make reusable. The bottom-line is
that software reuse is a good example of software
engineering discipline.

Peisonnel

Tuming to the last dimension [ identified related to
the question of “Where does Reuse Start?”, we will
focus on the key players in the reuse ball game. The
first player to come to bat is the programmer. Does
reuse start with a programmer? Most programmers
are responsible for the design and implementation of
software. If they can identify a shortcut to make their
job easier, or to make them appear more productive
to their management, then they probably will be moti-
vated to reuse software. But, while programmers
might be inclined to reuse software if it was fun, or it
was the path of least resistance, or if they are told to,
the real issue is “Who is going to create the software
to reuse in the first place? There needs to be a crit-

R ey SRR B

ical mass of quality software for programmers to draw
upon in order for them to fully subscribe to the reuse
paradigm! So, how do we bootstrap the system?

Maybe managers can instill a more altruistic attitude
on their programmers. This, of course, becomes a
question of budget cost and schedule risks associated
with the the extra time and effort needed to make
things reusable.

Reuse is a long term investment. Maybe the expense
of developing reusable software should be spread
across a project! With reuse raise to the project level,
there would higher potential for a larger retum on
investment, plus more insight and experience in prior-
itizing what should be made reusable. Again, there is
no free lunch, A project manager would have to
authorize the cost. But project management is gener-
ally rewarded for getting a job done on time and
under budget. There is no motivation for making the
next project look good. This shortsightedness needs
to be resolved with top management.

Indeed, this is the case, both here and abroad. At
NTT, GTE, IBM, TRW, to name a few companies,
reuse incorporation and deposition objectives are
being set. For instance at NTT, top management has
set a reuse ratio goal of 20% on all new projects, with
a deposition ratio quota of 5%. That is, all new pro-
grams ideally should consist of at least 20% source
code from the reuse library and all new programs
should try and deposit at least 5% of their source
code to the reuse library (subject to the acceptance
guidelines, constraints, and ultimate approval of the
Reuse Committee).

But, upper management edicting reuse to happen
doesn’t insure success. That is why there is a strong
argument for reuse to start in the classroom
(educator). The education system, while it is good at
teaching theory, might embrace a little more of the
engineering discipline and teach software building
block construction or composition of programs.
Courses are needed in domain analysis, application
generator construction, and parameterized program-
ming, as well as the availability of pre-fabricated,
off-the shelf components structured to facilitate the
construction of new applications in a classroom
setting. Again, critical mass is needed to bootstrap the
system.

Besides the reuse mind set, maybe reuse should start
with a tool set (tool developer). Personally, I do not
see the need for exotic and elaborate tools to support
reuse. Although, I am biased towards using a multi-
media hypertext system for the capture and represen-
tation of domain knowledge, which I consider crucial
to understanding what and how to reuse software.

ORIGINAL FAGE 1S
OF POOR QUIALITY



Have I run out of people who possibly could start the
reuse ball rolling? Have [ saved my heavy hitters for
last? Should reuse start with the customer? It
depends on the customer! A large customer, like the
Department of Defense, could easily demand certain
reuse requirements be met. Of course, there might be
a small tnitial overhead cost associated with getting
the ball rolling, but once the system was primed, once
application domains were populated with certified,
parameterized, well documented, reusable compo-
nents, then long term benefits could be reaped.

I have added the salesperson to this list of individuals
who could play a role in determining where reuse
might start. The reason is that if a salesperson knows
the marketplace and knows potential customers, then
they could play a key role in building the business
case necessary to justify the capitalization of software
for reuse.

Finally, I have added the systems analyst as being a
person who possibly could be instrumental in starting
software reuse. [ admit, he joined the team late, but
he tums out to be a clutch player. Back to the issue
of putting the horse in front of the cart. Before you
can reuse software, you need software to reuse. Who
are you going to call? The domain analysts! Who are
the most qualified individuals in an organization to 1)
analyze a problem domain, 2) determine logical sub-
systems and functions, and 3) determine the contents

or requirements of modules and anticipate the dif-
ferent contexts that they might be applied under? The
systems analysts. They have made life so difficult for
some of us programmers in the past by providing
incomplete or inconsistent or, worse yet, too detailed
specifications. This is a wonderful opportunity to
work together toward a common goal.

To summanze, the issue we have been exploring
related to the question of “Where does reuse start?”
has been identifying the roles played by certain indi-
viduals in an organization related to making software
reuse happen. In retrospect, several of the key players
had non-technical roles in the game! A point that
bears distinction and should come as no surprise.

Summary

In conclusion, the goal of my presentation was to
bring to light issues surrounding software reuse. To
force you to question what you might have accepted
on blind faith. [ have probably raised more questions
than I have answered, but, that is good. Hopefully it
will provide you opportunities for discussion. Finally,
[ have shown, as a wise old owl once stated, “It is not
what you know, but who, you know?" that often is

- necessary for success. Software reuse is no exception

to this rule. Software reuse is a people issue as well as
a technology issue.

ORIGINAL PAGE IS
OF POOR QUALITY






N91-22730

A CONCEPTUAL MODEL FOR
MEGAPROGRAMMING

October 9, 1990

Will Tracz

MD 0210
IBM Federal Sector Division
Owego, N.Y. 13827

OWEGO@IBM.COM
(607) 751-2169



i A Conceptual Model for Megaprogramming

Abstract

“Currently, software is pul logether one statement at a time. What we need is to put software together one
comp;);zerzt alt 9;0 time." — Barry Boehm, at the Domain Spccific Software Architecture (DSSA) Workshop,
Jll'y L .

Megaprogramming, as defined at the first [STO Software Technology Community Mecting, June 27-29, 1990, by
Barry Boehm, director of DARPA/ISTO, is component-based software engineering and life-cycle management.
The goal of this paper is to place megaprogramming in perspective with research in other areas of software engi-
neering (i.e., foimal methods and rapid prototyping) and to describe the author’s experience developing a system
to support megaprogramming. )

The paper, first, analyzes megaprogramming and its relationship to other DARPA research initiatives (CPS/CPL
— Common Prototyping System/Common Prototyping Language , DSSA — Domain Specific Software Architec-
tures, and SWU — Software Understanding). Next, the desirable attributes of megaprogramming software compo-
nents are identified and a software development model (The 3C Model) and resulting prototype
megaprogramming system (LILEANNA — Library Interconnection Language Extended by Annotated Ada) are
described.

Keywords: domain modeling, formal methods, inheritance, parameterized programming, rapid prototyping, soft-
ware engineering, and software reuse.

Abstract ii



{ A Conceptual Model for Yegaprogramming

1.0 Introduction

“Megaprogramming is the type of thing you can go into a 3-star generals office and use to explain what
DARPA is going to do for them to make their software less expensive and have better quality.” — Barry
Boehm, at the ISTO Software Technology Community Meeting, June 27-29, 1990.

Software researchers and developers have long pursued the goal of increased software productivity and quality. As
the prograraming profession matures and basic research into programming languages and formal methods advance,
opportunities are emerging to apply some of these results to the software development process. This paper is
about component-based programming or megaprogramming, a term coined by Barry Boehm(2} at DARPA/ISTO,
which is an essential element of the DARPA Software Strategic Plan!. Reusing software components, instead of
re-writing them, is a long held[16], intuitively appealing, if not obvious, approach to increasing productivity and

" quality. Systems developed based on reusable software artifacts, in principle, should cost less (partially attribut-

able to a shorter schedule), and contain fewer defects because of the “tried and true” parts used in its composition.
Unfortunately, a one-dimensional view of quality as being the “absence of defects” is not sufficient to explain the
necessary attributes of software that make it reusable (i.c., portability, flexibility, reliability, useability, and under-
standability are other essential attributes). ‘The observation that “quality can not be tested into a program, but
needs to be designed into a program,” is especially applicable to megaprogramming.

The goal of this paper is to examine the technical foundations of megaprogramming and to assess their effective-
ness for increasing the interoperability, adaptability, and scaleability of its components (i.e., the quality of its com-
ponents). To this end, this paper is organized into three sections. The first section summarizes and analyzes the
megaprogramming vision initially presented as part of the DARPA Software Technology Plan[2l]. The next
section introduces a conceptual model for reusable software components (the 3C Model(23}) based on separating a
component’s context (what can change) from the concept it encapsulates (the interface it cxports) and its content
or implementation. The final section describes work in progress on a megaprogramming implementation,
LILEANNA[24] (Library Interconnection Language Extended by Annotated Ada), which combines the formal
methods of ANNA[14] and the parameterized programming capability of OBJ[11]

2.0 Megaprogramming Vision

“Software productivity improvements in the past have been accidental because they allow us to “work faster”.
DARPA wants people to “work smarter” or to avoid work altogether.” — Barry Bochm, at the Domain
Specific Software Architecture (DSSA) Workshop, July 11-12, 1990.

Megaprogramming is envisioned as a giant step toward? increasing “development productivity, maintenance pro-
ductivity, reliability, availability, security, portability, interoperability and operational capability{2].” Megaprogram-
ming will incorporate proven, well-defined components whose quality will evolve, in the Darwinian sense.
Megaprogramming requires the modification of the traditional software development process to support
component-oriented software evolution. Domain-specific software architectures need to be defined and imple-
mented according to software composition principles and open interface specifications. The resulting sofiware
assets need to be stored and accessed in a repository ideally built on a persistent object base, with support for
heterogeneous software components in distributed environments. Finally, additional environmental capabilities
(e.g., hypermedia) are needed to provide software understanding at the component and architectural levels.

The subsections that follow describe some of the focal points of the DARPA Software Technology Plan(21]
related to megaprogramming. In particular, an environment to support megaprogramming (Megaprogramming
Software Team) and the generation and promotion of megaprogramming components (Megaprogramming Soft-
ware Interchange) are addressed. :

| Prior-to Boehm’s use of the term “megaprogramming”, Joseph Goguen[l1] suggested the tcrm Ayperprogramming to refer
to' a similar, if not identical, programming paradigm. The author has suggested using the term
programming-with-the-large[24] to emphasize the granularity of the objects being manipulated.

2 The analogy used by Barry Boehm was that, historically speaking, one might view machine language programming as
resulting in productivity at a snails pace, assembler language programming — a turtle’s pace, programming in FORTRAN,
C or Ada — walking, and megaprogramming as walking with seven league boots.

N ORIGINAL PACE IS Introduction i

OF POOR QUALITY



2 A Conceptual Model for Megaprogramming

2.1 Megaprogramming Software Team

“Configuration = Components + [nterfaces + Documentation
Software Team = Configuration + Process + Automation + Control’’ — Bill Scherlis, at the ISTO Soft-
ware Technology Community Meeting, June 27-29, 1990.

The goal of the megaprogramming software team is to create an environment to:

|. “manage systems as configurations of components, interfaces, specifications, etc.,
2. increase the scale of units of software construction (to modules), and
3. increase the range of scales of units of software interchange (algorithms to subsystems){21]."

The key elements of the megaprogramming software team are:

+ Component sources — currently, components under consideration are from reuse libraries (e.g.,
SIMTEL20(5] or RAPID[20]) or COTS (Commercial Off-The-Shelf) software (e.g., GRACE[l] or
Booch([3] components). Application generator technology is desirable to provide for adaptable modules
while re-engineered components (e.g., CAMP[17]) could provide additional resources. It is desirable to
mhove toward new customizable components with a rapid prototyping capability.

« Interface definitions — currently, there exists an ad hoc standard consisting of Ada package specifications
and informal documentation. It is desirable to develop a Module Interconnect Formalism (MIF) with
hidden implementations supported by formal analysis and validation tools.

+ System documentation — currently, simple hypertext systems are supporting the (often ambiguous and
incomplete) textual documentation associated with software components. It is desirable to create a
repository-based, hypermedia environment that provides traceability between artifacts and supports the
capture, query, and navigation of domain knowledge.

+ Process structure — currently, there exists no predictable software development process. It is desirable to
. develop an evolutionary development life cycle with support to domain engineering, integrated require-
ments acquisition, and reverse/re-engineering.

« Process Automation — currently, CASE tools are cither stand-alone or federated (e.g., Unix’). It is desir-
able to integrate the tools and create a meta-programming environment to support process description and
refinement.

« Control/Assessment — currently, only a priori software metrics and process instrumentation exists. [t is
desirable to integrate the measurement process with tool support and to create a cost-estimation capability.

The megaprogramming software team initially expects to draw resources from the STARS (Software Technology
for Adaptable Reliable Systems) SEE (Software Engineering Environment) program. Future tools will be contrib-
uted by Arcadia[22}, CPS/CPL{6] (Common Prototyping System/Common Prototyping Language), DSSA
(Domain Specific Software Architectures)[18], POB (Persistent Object Bases), SWU (Software Understanding),
and REE (Re-Engineering) programs. Interface and architecture codification will be supported by a Module
Interconnect Formalism (MIF), which is an outgrowth of the CPS/CPL program.

The goal of MIF is to adequately describe a software component such that its selection and use can be accom-
plished without looking at its implementation. The component interfaces will include, not only the entry points,
type definitions and data formats (e.g. Ada package specification), but a description of its functionality, side effects,
performance expectations, degree and kind of assurance of consistency between specification and implementation
(reliability), and appropriate test cases. DSSA will provide the initial ‘avenue for the application of this tech-
nology. (An architecture is a collection of interfaces.) Incremental asset creation and customization will be guided
by the CPS prototyping technology.

Asset capture and re-capture will be supported by SWU’s design record, hypertext browsing capability, and REE.
The design record will provide a “common data structure for system documentation and libraries[21]". The sug-
gested data elements in a design record include:

s code,
s test cases,

ORIGINAL FAGE IS
OF POOR QUALITY

3 Unix Is a trademark of AT&T Dell Lahoratories.

N ’ Megaprogramming Vision 2



3 A Conceptual Model for Megaprogramming

library and DSSA links,

design structure,

access rights,

configuration and version data,
hypertext paths,

metric data,

requirement specification fragments,
PDL texts,

interface and architecture specifications,
design rationale,

catalog infcrmation, and

search points.

2.2 Megaprogramming Software Interchange

“Software Interchange = Software Team + Convention + Repository + FExchange.” — Bill Scherlis, at the
ISTO Software Technology Community Meeting, June 27-29, 1990. N

The goal of the megaprogramming software interchange is to “enable wide-area commerce in software compo-
nents[21]". The megaprogramming software interchange, which is integrated with the megaprogramming software
team, consists of the following elements:

*

» Conventionalization — currently, conventions are emerging. It is desirable to create a cooperative decision
and consensus mechanism that supports adaptable, multi-configuration libraries, which present a standard
search capability.

* Repository/Inventory— currently, repositories support code storage only. It is desirable to retain, assess,
and validate other software assets such as architectures, test cases, specifications, designs, and design ration-
ales.

« Exchange/Brokerage — current intellectual property rights.and government acquisition regulations are sti-
fling a software component industry. It is desirable to populate certain application domains (via DSSA)
and to support the creation of an electronic software component commerce by defining mechanisms for
access control, authentication/certification and establishing composition conventions.

The megaprogramming component interchange expects intially to draw software components from the reuse
libraries in STARS and DSSA with future support derived from POB, and CPS/CPL (MIT).

3.0 Conceptual Model for Software Components

“Before components can be reused, there needs 10 be components to reuse.”

As discussed in the previous section, megaprogramming requires the definition of proven, well-defined compo-
nents that are implemented according to software composition principles. This section presents a formal frame-
work for developing reusable software components that leverage the compositional capabilities of the
megaprogramming language LILEANNA (covered in the next section of this paper). A conceptual model{24} is
described that distinguishes between three distinct aspects of a software component:

1. the concept or abstraction the component represents,

2. the content of the component or its implementation, and

3. the context that component is defined under, or what is needed to complete the definition of a concept or
content within a certain environment.

These three aspects of a software component make the following assumptions about their environment:
l. There is a problem space (application domain) that can be decomposed into a set of concepts (or objects if

one prefers using an object-oriented paradigm). . _
2. There is a solution space that is characterized by the contents (implementations) of the concepts.

ORIGINAL PAGE IS
OF POOR QUALITY

Megaprogramming Vision 3



4 A Conceptual Model ..c Vegaprogramming

3. The solution space is populated by several different implementations, or “* .parameterized*” implementa-
tions that can be instantiated by different contexts within the solution space.

Before proceeding further into the material in this section, it is important for one to realize the subtle implications
that “dynamic binding” has on one’s approach to programming. The conceptual model described in this section
assumes a programming language and environment with all binding of parameters done prior to run time (with
the exception of actual parameters passed to subprogram operations). The model recognizes that binding can
occur at or before compile time, and at load/link edit time. This view of binding, to some readers, may appear
limiting (which, in some sense, it is), but this limitation, in reality, is a trade-off for early error detection (strong
typing), which, in some application areas, is considered to be of greater importance.

The rest of this section defines the terms context, content, and concept, in more detail and describes their relation-
ships to modularization, specification, interface design and parameterization.

3.1 Three Aspects of a Software Component

This conceptual model for software components is motivated by the need to develop useful, adaptable, and reli-
able software modules with which to build new applications. These three nceds are addressed individually by the
model.

1. A useful component meets the high-level requirements of at least one concept necessary to design and
implement a new software application.

2. An adaptable component provides a mechanism such that modules can be casily tailored to the unique
requirements of an application.

3. A reliable component is one that accurately implements the concept that it defines.

This conceptual model for software components, referred to as the 3-C model, is based on three aspects of a soft-
ware component: concept, context, and content. These three terms are addressed individually in the subsections
that follow.

3.1.1 Concept

“Domain analysis is the building up of a conceptual [ramework, informal ideas and relations; the
formalization of common concepts.” — Ted Biggerstaff, MCC.

The concept represented by a reusable software component is an abstract description of “what” the component
does. Concepts are identified through requirement analysis or domain modeling as providing the desired
functionality for some aspect of a system. A concept is realized by an interface specification and an (optionally
formal) description of the semantics (as a minimum, the pre- and post-conditions) associated with each operation.
An Ada package specification (operations, type and exception declarations) for a stack abstract data type, with its
behavioral semantics described in Annaf14], is an example of a reusable software concept.

3.1.2 Content
“The ability to convert ideas to things is the secret of outward success.” — Henry Ward Beecher.

The content of a reusable software component is an implementation of the concept, or “how" a component does
“what" it is supposed to do. The software component conceptual module assumes that each reusable software
component may have several implementations that obey the semantics of it's concept (e.g., operational specifica-
tions are the same, but the behavioral specifications are different). The collection of (28) stack packages found
among Grady Booch’s{3] components is an example of a family of implementations for the same concept (stack).

4 Perhaps “generalized” is a better word. . -
o RED o

Conceptual Model for Software Components 4



5 A Conceptual Model for Megaprogramming

3.1.3 Context

“Understanding depends on expectations based on familiarity with previous implementations.” ~ Mary Shaw,
SEI

One of the failures of software reuse is that user’s expectations of a reusable software component do not meet the
designer’s expectations of the reusable software component (the square-peg-in-the-round-hole syndrome). By
explicitly defining the context of a reusable software component at the concept and content level, and formally
specifying its “domain of applicability”, the user can better select and adapt the component for reuse.

The context of a reusable software component takes on three dimensions:

1. the conceptual context of a reusable software component — how the interface and semantics of the module
relate to the interface and semantics of other modules,

2. the operational context of a reusable software component — what the characteristics of the data being
manipulated are, and

3. the implementation context of a reusable software component — how the module depends on other
modules for its implementation.

Parameterization, inheritance and importation of scope through the use of abstract machine interfaces are all lan-
guage mechanisms that assist in separating context from content. Within the framework of the 3-C model, one
uses these language constructs as follows:

I. one specifies the conceptual context of a software component by using inheritance to express relationships
between concepts (module interfaces). This occurs when two concepts share the same syntax and seman-
tics.

2. one defines the operational context of a software component by using genericity to specify data and oper-
ations on the data being manipulated by a module (at the conceptual or implementation levet).

3. one decides on the implementation context of a software component by selecting the operations to be used
for and by the implementation of a module. These operations are external to the component. Inheritance
or importation of scope are the two languages mechanisms that support the definition of a module’s imple-
mentation context.

One should note the explicit separation of the roles of code and type inheritance in the model. Type inheritance is
used to express the conceptual context of a module. The conceptual context of a software module forms a true
partial order in that the concept inheriting another concept “is a” subtype of the latter concept. Code inheritance
is used as an implementation mechanism and may or may not be the same as the type inheritance used to express
the conceptual context of the concept associated with the software component for which the implementation is
being created.

An example of conceptual context is a stack that can be used to describe the interface of a deque (double ended
queue). The operational context for a deque is the type of the element being stored. The implementation context
of a particular deque implementation might be a sequence abstraction. That is, the implementation would be
designed to refer to operations in an abstract machine interface found in a sequence concept, which could have
several implementations (e.g., array or linked list). Alternatively, the deque could be indirectly implemented (i.c.,
generated in the megaprogramming sense) by simply

I. renaming some of the operations in an implementation of the stack (i.c., Push and Pop would become
Push_Right and Pop_Right),

2. adding some new operations (Push_Left and Pop_Left), and

3. inheriting the rest (¢.g. Print, Length, Is_Tmpty, etc.).

Using the syntax of LILEANNA, the following megaprogram would generate the (parameterized module) deque
described above:

make Deque[ Triv ] is
Stack [ Triv ] * (rename ( Push => Push_Right )
( Pop => Pop_Right )
( Stack => Deque )
* ( add Push_Left, Push_Right )
end;

Conceptual Model for Software Components 5



6 A Conceptual Model for Vegaprogramming

-

The selection of an implementation, or the content of the concept is determined by trade-offs in context. Clearly,
knowing the characteristics of the type of data structure being manipulated will lead to more efficient implementa-
tions. This can result in the population of a reuse library with several efficient implementations of the same
(parameterized) concept, each tailored to a particular context. At design time, a programmer could identify the
concept and define the context it is being manipulated under based on requirements or operating constraints. At
implementation time, the programmer could instantiate an implementation of the concept with the conceptual
contextual information plus any other contentual contextual information necessary.

Separating context from concept and content complements the work of Parnas{19] in suggesting that the quality of
- software can .be improved by isolating change. It has been demonstrated that software is more reusable, or more
easily maintained, if the types of possible modifications to the software are taken into consideration at design time.

4.0 LILEANNA

LILEANNA (LIL Extended with ANNA (Annotated Ada) [14]) is an implementation of LIL (Library Intercon-
nect Language), proposed by Joseph Goguen [9] as a MCL (Module Composition Language) for the program-
ming language Adaf25]. LIL is a language for designing, structuring, composing, and generating software systems.
It is based on the work of Goguen and Burstall on the language CLEAR[4] and Goguen on OBJ[8]. LIL was first
introduced at the Ada Program Libraries Workshop in Monetary California. It was later refined for publication in
IEEE COMPUTER][10]. Since then it has been the interest of several researchers(7, 12, 13, 24].

The primary design goals of LIL were:

to make it easier to reuse software written in Ada,

to facilitate the composition of Ada packages,

to support an object-oriented style of design and documentation for Ada,

to rapidly prototype new applications by integrating executable specifications with the controlled manipu-
lation of source code, :

to avoid recompilation, and

to support maintenance of Ada programs and families of programs.

R BN —

The power of megaprogramming in LILEANNA centers on the ability to compose new packages with package
and subprogram expressions via the make statement. Existing packages may be manipulated through package
expressions to specify the instantiation, aggregation, renaming, addition, elimination or replacement of operations,
types or exceptions.

LILEANNA supports the structuring and composition of software modules from existing modules. One can

1. instantiate a parameterized module to create

a. implementations of operations,

b. a simple package/module, or

c. a parameterized package/module (generic).
2. Compose/structure modules by ' '

a. combining other modules (inheritance and multiple inheritance) (e.g., merging two module’s oper-
ations and types),
adding something’ to an existing (inherited or instantiated) module (e.g., adding an operation),
removing something from the interface of an existing module (e.g., hiding an operation),
renaming something (e.g., purely textual changing the name of operation in an interface),
selecting from a family of implementations, or
replacing something in an existing module (i.€., a pure swap — a remove and add combination).

-0 a0 J

The result of evaluating a LILEANNA composition/megaprogramming statement (i.c., a2 make statement) is an
executable Ada package specification and body that either is

1. a “stand-alone” flat module (nothing imported), or
2. a hierarchy, with selected functionality imported and perhaps repackaged.

Note that since there is no inheritance in Ada, composition that uses inheritance will need to either import all
modules in the inheritance hierarchy (being careful to rename those which might result in ambiguity), or include

S Where “something” is a sort/type, operation, exception, or in some cases, an axiom.

Conceptual Model for Software Components 6



-

7 A Conceptual Mode!l for Megaprogramming

all necessary functionality directly in the implementation (package body). In either case, the resulting user inter-
face (package specification) should not be cluttered by such details.

4.1 Formal Foundations of LILEANNA

LILEANNA has its formal foundations in category theory® and in initial and order-sorted algebras. These con-
cepts form the basis for advances in algebraic specifications and type theory. Many type systems are based on the
concept of an algebra. An algebra defines a set of values and the operations on them just as an abstract data type
defines the data of the type and provides operations on them.

Program semantics in LILEANNA are expressed in first order predicate calculus rather than using re-write rules (a
la OBJ) as a way of implementing conditional order-sorted equational logic.

4.2 LILEANNA Language Constructs and Examples

LILEANNA is a language for formally specifying and generating Ada packages. LILEANNA extends Ada by
introducing two entities: theories and views, and enhancing a third, package specifications. A LILEANNA
package, with semantics specified either formally or informally, represents a template for actual Ada package spec-
ifications. It is used as the common parent for families of implementations and for version control. A theory is a
higher level abstraction, a concept (or a context), that describes a module’s syntactical and semantic intcrface. A
view is a mapping between types, operations and exceptions.

Programs can be structured/composed using two types of hierarchies:

1. vertical: levels of abstraction/stratification, and
2. horizontal: aggregation and inheritance (type and code).

LILEANNA supports this with two language mechanisms

1. needs: import dependencies, and ,
2. import, protect, or extend: three forms of inheritance, and includes, a subtyping construct.

Theories are an encapsulation mechanism used to express the requirements on generic module parameters. Theo-
ries also play a role in building horizontal and vertical hierarchies by defining the interface requirements for
modules that later can be instantiated with a more concrete implementation. Views map theories to theories, or
theories to packages, or pieces of packages. One powerful feature of LILEANNA is the encapsulation of parame-
ters in theories. With this capability, the semantics of parameters can be formally specified and the domain of
applicability of a module can be explicitly qualified.

The generative capability of the LILEANNA is provided by package expressions, a “super make™ feature for
creating new packages from existing packages through horizontal, vertical and generic instantiation. Package
expressions manipulate Ada packages and their contents based on their relationships to LILEANNA packages,
theories and views. The basic operations supported are importation in the form of inheritance, specialization in
the form of instantiation, generalization, and aggregation. [inally, the contents of modules can be manipulated
through * package operators by indicating what entities are being added, hidden, renamed, or replaced.

LILEANNA goes beyond the Ada instantiation capability in that generic packages can be composed to create new
generic packages without themselves being instantiated. Partial instantiations are also possible. A view is used to
instantiate a generic package. Default views can be computed if only package name is supplied. Alternatively,
mappings of formal to actual parameters may form an in-line view as part of a package expression.

The following example illustrates several LILEANNA language constructs. In the example, the package
Integer_Set is made from a parameterized LILEANNA package, LIL_Set. This example is very similar to the
instantiation of an Ada generic, except that in Ada, the instantiation process is done at compile time. In
LILEANNA, the generic instantiation is done prior to compile time. This results in Ada source code which 1s
ready to be compiled, composed or further instantiated.

8 Goguen has suggested that LILEANNA is based on another 3-C model — Category theory, Colimits, and Comma Catego-
ries. ’

7 Make is a UNIX term and command for the process of selectively compiling and linking compiled outputs to make an
executable module.

LILEANNA 7



8 A Conceptual Model for Viegaprogramming

make Integer_Set is LIL_Set[Integer_View] end;

Attention should be paid to the view (shown below), [nteger View (from theory Triv to the Ada package
Standard), used in the make statement above. There is an explicit mapping between the type Element and the
type Integer. The point to be emphasized is that this mapping can be given a name and reused in other
instantiations.

view Integer_View :: Triv => Standard is
types (Element => Integer);
end;

Alternatively, as shown below, the instantiation could have been stated as

make Integer_Set is
LIL_Set [ view Triv => Standard is types (Element => Integer); ]

end:

In this case, the view does not have a name, but the mapping is explict to this particular instantiation.

The following example illustrates the use of horizontal and vertical composition. A generic package (Short_Stack)
is generated by selecting an array implementation (List_Array) of the list interface theory (List_Theory) needed by
the LILEANNA package (L/L_Stack). It is assumed that the LILEANNA package (L./I._Stack) has a compa-
rable Ada package (Stack) and that an explicit view may or may not exist between them.

make Short_Stack is
LIL_Stack -- inherit Stack Package (horizontal composition)
needs (List_Theory => List_Array)
-- supply array package (vertical composition)
end;

The following is an example of a make statement that instantiates the generic LILEANNA package Sort according
to the view Nat_Default (not shown), which maps the Natural numbers and the pre-defined linear order relation-
ship onto the theory of partially ordered sets.

make Sort_Lists_of_Naturals is
Sort[Nat_Default]
needs (ListP => Linked_List)
end;

An example of a more involved make statement using multiple inheritance and package operators follows. It is
based on an existing set of Ada packages that defines an Ada-Logic Interface{l5] package for reasoning.

LILEANNA 8



A Conceptual Model for Megaprogramming

make New_Ada_Logic_Interface is
Identifier_Package +
Clause_Package*(hide Copy) +
Substitution_Package +
DataBase_Package +
Query_Package*(add function Query_Fail (C: Clause;
' L: List_0f_Clauses)
return Boolean)
*(rename ( Query_Answer => Query Results ))
end;

The result is a merged package specification where,

—

the Copy operation is not available on Clauses,

an additional operation, Query_Fail, now augments those inherited from the specification, Query_Package,
the Query_Answer operation is not available in the resulting interface, instead, the Query_Results operation
can be invoked. '

5.0 Conclusion

“We should stand on each others shoulders, not on each others feet.” — Peter Wegner{26]

Megaprogramming is a new programming paradigm that requires both a critical mass of software components and
a disciplined approach to program design and specification. This paper has presented one approach to megapro-
gramming that is based on a formal model (the 3-C Model) for developing reusable software components. This
model gives insight into the relationships between type inheritance, code inheritance, and parameterization that is
essential for providing the adaptability and interoperability of software components.” The corresponding imple-
mentation, LILEANNA, serves as a valuable vehicle for exploring megaprogramming concepts.

6.0 References

L.

Berard, E.V. Creating Reusable Ada Software. Proceedings of the National Conference on Software Reus-
ability and Maintainability, September 1986. .

Boehm, B. DARPA Software Strategic Plan. Proceedings of ISTO Software Technology Community
Meeting, June 27-29 1990.

Booch, G. Software Components with Ada. Benjamin Cummings, 1988.

Burstall, and Goguen, J.A. The Semantics of CLEAR, a Specification Language. Proceedings of the
1979 Copenhagen Winter School of Abstract Software Specification, pages 292-332, 1980.

Conn, R. The Ada Software Repository. Proceedings of COMPCON87, February 1987.

Gabriel, R.P. (editor). Draft Report on Requirements for a Common Prototyping System. in ACM
SIGPILAN Notices, 24(3):93-165, March 1989.

Gautier, R.J. A Language for Describing Ada Software Components. Proceedings of Ada-Europe Con-
ference, May 26-28 1987. :

Goguen, J.A. Some Design Principles and Theory of OBJ-0, a Language for Expressing and Executing
Algebraic Specification of Programs. Proceedings of Mathematical Studies of Information Processing,
pages 425-473, 1979.

Goguen, J.A. LIL - A Library Interconnect Language. in Report on Program Libraries Workshop. SRI
International., pages 12-51, October 1983.

LILEANNA 9



A Conceptual Model for Megaprogramming

13.

14,

15.

16.

17.

18.

20.

21

22

23.

24.

25.

26.

Goguclr;.gg.A. Reusing and Interconnecting Software Components. [EEFE Computer, 19(2):16-28, Feb-
ruary .

Goguen, JJA. Hyperprogramming: A Formal Approach to Software Environments. Proceedings of Sym-
posium on Formal dpproaches to Software Envrionment Technology, Joint System Development Corpo-
ration, Tokyo, Japan, January 1990.

Harrison, G.C. An Automated Method for Referencing Ada Reusable Code Using LIL. Proceedings of
Fifth National Conference on Ada Technology and Fourth Washington Ada Symposium, March 17-19 [987.

Liu, D.B. A Knowledge Structure of a Reusable Software Component in LIL.. Proceedings of Sixth
National Conference on Ada Technology, March 14-17 1988.

Luckham, D. and vonkenke, F.W. An Overview of Anna, A Specification [anguage for Ada. [FEE
Software, 1(2):9-22, March 1985. -

Madhav, N. and Mann, W. Abstract Specification of Automated Reasoning Tools: An Ada-Logic Inter-
face, Program Analysis and Verification Group, Stanford University, 1989.

Mcllroy, M.D. Mass Produced Software Components. Proceedings of NATO Conference on Software
. Engineering, edited by Naur, P., Randell, B. and Buxton, J.N., pages 88-98, 1969.

McNicholl, D.G., Palmer, C., et al. Common Ada Missile Packages (CAMP) Volume [: Overview and
Commonality Study Results, McDonnel Douglas Astronautics Company, :AFATL-TR-85-93, May 1986.

Mettala, E.G. Domain Specific Software Architectures presentation at ISTO Software Technology Com-
munity Meeting, 1990. '

Parnas, D.L. A Technique for Software Module Specification with Examples. Communications of the
ACM, 15(5):330-336, May 1972,

Ruegsegger, T. Making Reuse Pay: The SIDPERS-3 RAPID Center. /EEE Communications Magazine,
26(8):816-819, August 1988. _

Scherlis, W.L. DARPA Software Technology Plan. Proceedings of ISTO Software Technology Commu-
nity Meeting, June 27-29 1990.

Taylor, R., et al . Foundations for the Arcadia Environment Architecture. Proceedings of Third Sympo-
sium on Software Development Environments, pages 1-13, November 1988.

Tracz, W. The Three Cons of Software Reuse. Proceedings of Fourth Workshop on Software Reuse
Tools., 1990.

Tracz, W.J. Formal Specxﬁcétion of Parameterized Programs in LILEANNA, PhD thesis, Stanford Uni-
versity, 1990. In progress.

U.S. Department of Defense, US Government Printing Office, The Ada Programming Language Refer-
ence Manual, 1983, .

Wegner, P. Varieties of Reusability. Proceedings of ITT Workshop on Reusability Programming. Sep-
tember 1983.

References 10



Ada Net

John McBride
Planned Solutions






AdaNET

Presented to
RICIS '90 Software Engineering Symposium

‘November 8, 1990

Presented by
John McBride
- Planned Solutions, Inc.



AdaNET Program

+ Five Year R & D Effort to Advance the State of Software
Engineering Practice

« National Facility in West Virginia to increase U.S.
Productivity, Economic Growth & Competitiveness

« Enhance Existing AdaNET System to Provide a Life Cycle
Repository for Software Engineering Products, Processes,
Interface Standards, & Related Information Services

Planned
AJaNET 1 Solutions, Inc.

Purpose and Scope

« Transfer Software Engineering Technology Within the Federal
Sector & to the Private Sector

Reusable Software Components Useful in All Phases of
Lifecycle

Engineering Process Descriptions for Developing
a aptable & Rellable Systems & Software Worthy of
euse

Interface Standards

- More Consistency In System Features,
- Simpler System Integration,
- Aid in the Use of Metrics as Quality Predictors

Related Information & Services

Software Engineering Help Desk
Conference Listings

References

Networking to Other Databases
E Mail

Planned
AdNET 2 Solutions, Inc.




AdaNET Goals

. Establish a National Center for the Collection of
Software Engineering Information

. Provide On-Line Life Cycle Repository

. Promote a Cultural Change Necessary to Improved
Quality & Efficiency

+ Provide a Platform for Research in Technology

Transfer
Planned
AJaNET 3 Solutions, Inc.
AdaNET Benefits
- Decrease Software Costs
« Improve Quality of Software Systems
Planned

AGINET 4 Solutions, Inc



AdaNET is a National Resource

Software
Reuse
Expert

AQaNET
System
-

o L0}
Bl

west
virginia

Accessible Via InterNET and TeleNET Public Access Dial Up

: Planned
AdaNET 8 Solutions, In

Users of AdaNET

Small Companies - Reusable Components and Software
Engineering Help Desk will Allow These
Companies to be More Competitive

Large Companies - Large, Comrlex Systems can be Buiit
More Reliably and at Lower Cost with
Reusable Components

Academia - Facilitates Teaching and Research in Software
Engineering With Reusability

U. S. Government - Spinback Benefits to Government Software
Developers

Planned
AdsNET ¢ Solutions, In.




Major Research and Technology Issues

Application and
Disseminatlon Policles Software Reuse Strategles AdaNET Architecture
. Interagency Agreements ) i . AdaNET Context
gency g omain Modification + Operating Modes
+ Customer Licenses » Type . Classiication * Security and Integrity
+ User Interface
+ Data Rights + Granularity + Retrieval
AdaNET Services to Access
+ Title and Use Guarantees « Selection . Assistance Resources
+ Liability + Configuration . Qualification AdaNET Resources
+ Information
+ Qrganization Type . . + Products
. + Experts
» Charges and Profits
+ International Clients
» Military Restrictions
Planned
AJaNET 7 Solutions, Inc
AdaNET Enhancements

AdaNET Service Version Two (ASV2) Current System
- Hosted on Data General
- CEO Office Automation Product Organized Files in Drawers

and Folders
- Keyword and Textual Search
ASV3 (late 1991)

- Unix Based

- Integrate JSC/Barrios Developed Autolib & Army/RAPID
Derived Technologies

- Natural Language Query, Facets, Keyword Search
ASV4 (late 1994)
- Object Management Support for Full Life Cycle Traceabllity

——————n : Planned
AdaNET & ' Solutions, In



AdaNET User Registration

Mountain NET
P.O. Box 370
Dellslow, W.V. 26531
(304) 296-1458
(304) 296-6892 FAX
1-800-444-1458 help desk (Peggy Lacey)

Planned

AJaNET 10 Solutions, In

Current AdaNET Products and Services

Army Ada Software Repository (227 » Cltations (678)
STARS Repository (In process) + Newsletiers (19)
NASA/JPL Components (in process) » Standards (92)
Products Conferances
+ Services {40)* + Announcements (112)
+ Software (141) + Papar Calls (20)
E-Mail ' News
« Abstracts (129)
+ User Contributions (21)
Tralning Contracts
+ Gulded Study (102) + Awards (161)
+ Self Study (21) + RFPs (177

* - Functional Areas
~**-Unique Files

[ - Planned
AdaNET 8 Solutions, In.




Summary

+ Life Cf\;cle Approach to Reuse Can Provide a Significant Impact
on Software Productivity

- Software Engineering Information Provides Knowledge Transfer

« AdaNET is an Operational Program with a Prototype Development
and Evaluation Cycle

Planned
Solutions, In

AdsNET 11






POSIX and Ada Integration
in the
Space Station Freedom Program

Robert A. Brown
The Charles Stark Draper Laboratory, Inc.



Overview

POSIX Overview
POSIX Execution Model

Ada Execution Model

SSFP Flight Software Ada Requirements
POSIX/Ada Integration

POSIX Overview

Portable Operating System Interface
for Computer Environments

IEEE sponsored standards development effort
» Voluntary participation
« Concensus standard (75% required for approval)

Purpose

¢ Define standard OS interface and environment

« Based on UNIX _

« Support application portability at source code level

Family of open system standards

©)



POSIX Working Groups
P1003.0: Guide to POSIX Open Systems Environment
P1003.1: System Interface |
P1003.2: Shell & Tools
P1003.3: Testing & Verification
P1003.4: Realtime
P1003.5: Ada Language Bindings
P1003.6: Security Extensions
P1003.7: System Administration
P1003.8: Networking
P1003.9: Fortran Language Bindings
P1003.10: Supercomputing

P1003.11: Transaction Processing

POSIX Execution Model
P1003.1

POSIX process

e Address space

+ Single thread of control executing in address space
s Required system resources

Process management

s Process creation -- fork() and exec()
* Process group and session

« Process termination -~ exit(), abort()

Process synchronization
« Signals -- sigsuspend(), pause()
o Wait for child termination -- wait(), waitpid()

Process delay
« alarm() and sleep()



POSIX Execution Model
Realtime Extensions

e Priority scheduling

e Binary semaphores

¢ Shared memory

¢ Message queues

e Asynchronous event notification

e Clocks and timers
¢ High resolution sleep
e Per-process timers

©

Ada Execution Model
Language Definition

Ada program

e Single address space

¢ Multiple threads of control
¢ Required system resources

Task management

o Task creation -- elaboration, allocator evaluation
» Organization -- task master

e Task termination -- normal completion, exception

Task synchronization
* Rendezvous

Task delay
¢ Ada delay statement



SSFP Flight Software Requirements

Multiple real-time programs sharing same processor
Fixed priority, preemptive scheduler

Single level dispatcher

Norn-olocking i/0 and system calls

Ability to schedule tasks for periodic execution

Ability to schedule tasks to respond to specific events

Ada Execution Model
Realtime Extensions

Scheduling
* CIFO cyclic scheduler

Binary semaphores

[ 4

Shared data template

Precision time services

Event notification
e CIFO event management



POSIX/Ada Integration
The Problem

e POSIX looks from program outward
« Semantics defined for processes only
 Single thread assumption

e Ada looks from program inward
« Semantics defined for tasks within a program only
* Single program assumption

« Integration of POSIX and Ada
« Extend POSIX semantics to multi-threaded processes
« Extend Ada semantics to multiple programs

POSIX/Ada Integration
A Solution

« Extension of POSIX semantics to multiple threads
o Define system interface for threads
« Redefine existing services for multiple threads
« Signals '
« Fork() and exec()
 Per process static data
« Semaphores, events and timers

o Extension of Ada semantics to multiple programs
« Global task scheduling
« Definition of shared package semantics
» Ada interfaces to multiprogramming services
e Process control -- start, stop
« Interprocess communication

®



.
Session 4

Software Engineering: Issues
for Ada's Future

Chair: Rod L. Bown , University of Houston-Clear Lake

Assessment of Formal Methods
for Trustworthy Computer
Systems

Susan Gerhart
Microelectronics and Computer Technology Corp. (MCC)



Ar ASsessmerz-/' of
/:;’"‘M// ﬂ(«(‘t«é 7@?
ﬁm/'worﬁtz S‘e,.w(em..s

> vsan Gerhart

MCL Foruud Metheds /
So'pﬁuwﬁeluwlc.sy

9 erhard@ mec.com  §i2- 332-3792

» w/m;f Che Fbvm/ Md"-oc/s ,7
| ‘ SMWS‘ for Truatwothy Sy s,
* A'-Sac.sam,eou‘ OF Frl via Sarelr

C2



“Applied Mathematics of Software Engineering”
college sophomore through Ph.D. level

Use
logic, set and sequence notation, T nduchon
finite state machines, other formaiisms MJM,
In Sqmbe/ ‘e
reaSon/ng

e system models
e specifications
e designs and implementations

For MM Comp. Sec.
e highly reliable, secure, safe systems &L# M D
e more effective production methods 72#&k, GFCS
¢ software engineering education SEL

In levels of use

guidance: structuring what to say ﬁ‘.up«.«

rigorous, formal: | [
generated and worked proof obligations
mechanized: using proof assistants d. 8.

MCC Formal Methods Transition Study » Session 1



A NonExecutable Spec Language: ASLAN

« State-transition based

« First order logic with equality

» Sections

» Types (builtin and user constructed)
» Constants & Variables

» Definitioas & Axioms

» Initial Condition

&

» Invariant

» Constraint
» Transitions @Est conditionﬂ
« Generates verification conditions
» [C=>INV |
» Foreacht,INV’ & PRE’(t) & POST(t)=>INV & CON
 Limited type checking - B
« PASCAL-like syntax
o Levels (of refinement)

- » Additional VCs
e Derived from Ina Jo research (R. Kemmerer at UCSB)

EMTS Warkchan ~ M Trwne 1000 V-



Portion of an ASLAN Spec

,/TYPE

book is structure of (
title : string,
author : string,

sh:r‘ subject : string),
copy,

copies is set of copy

| VARIABLE ...

~ db: library,

staff: users,

borrower(copy): user,

next_id: pos_imt

INTTIAL
“ db = empty & staff = empty & next_id = 1
INVARIANT
Pro? forall c:copy
"~ (cisindb -> available(c) xor borrower(c)~=noone)
&

cardinality(db,next_id-1)

TRANSITION check_out(c:copy, u:user, s:user)
W ENTRY cisin db & available(c) & s isin staff &
' under_lim(u)
- EXIT borrower(c) becomes u

FMTS Workshop 20 June 19950 L g



An ASLAN-generated Verification Condition

consistency conjecture for check_out(c:copy, u:user, s:user):

(forall c:copy
¢ isin db’ -> c{available] xor c{borrower] ~= noone
b &
fnw""" ¢ isin db’ & clavailable] & s isin staff’ & under_lim’(u)
pebrt &

~c[available] & c[borrower]=u

* &
r,.,.-""" db = db’

&

staff = staff’)

j,->

(forall c:copy
c isin db -> c[available] xor c[borrower] ~= noone

Lot o

true)

N
P LR AN Tiemn 1OV et it SR




, indicating that no back-
xcesshasibeen selecied for exe-
OinterTupts ase active, the pro-
ike, and the Select operation
n spontancously. It is specified

——

Z=none
wnd” = bachground
- vy

‘e nniy
mdler’ = OneHandler

=an a.part of the interface be-
kernel and an application, Se-
rernaboperanon of the kernel
appen whenever its precondi-
- Theprecondivon is ‘
nowe A ready *Q

ssor must be idle, and at least
'ound’processmustbe-ready to
Ist part of-this-precondition is
icidy; and the second partisim-
: predicate

recaiy

value of current is selected
.,bumhcq,ecﬁadondoanqt
* chedce is made — it is non-
ic. This nondeterminism lets
catiom sy exactly what pro-
day sely om the kernel 0 do:

Ssesin-a-ceruim state, it gill”

nZ mescaema,)@sdﬁbenby.metm
=

) =

Wém

Giobal luncions and constants are deined by the form " T

’ decieragion R
Precicates

mmmmmaNMamwa‘mmmm
Hera,ldeﬁneodymonytrbdsmedintﬁsalﬁdo:

TG ey pAIDDUNG LGS,

Sets:
S:px Sisdectared as a setof X's.
xXe$S Xis amembera S
xe$S Xis not amember of S,
SgT Sis a subsetof T Every member of Sis also in T. :
SuT The union of S and nnmmmdSaTam
ST The intersection of S and T: R contains every member of both Sand T
S\T The diference of S and ﬂanWdSmmwht
2 Emoty set: it contains no members.
{x} Singleton set: R contains just x
N The set of naual mavbers 0, 1,2, ...
S:FX Sis declased 28 2 finte st of X's.
max(S) Thm-udhwsudmms
Functions:
f: XY f SMGamMMX 10 Y (described in the handier delini-
tiononip, 23),
dom f The:domainiofif the:setofivaiues xfor which #x)is defined.
ran:f Therangeofif tresstofvaiuesitaleniy for)as x vames over the domainol £

Afunctioslike £ excepe that vis removed vom ils domain.
Logic:
PAQ Pme:nistmoibw\Pmeauluo.
P=Q Pimples O:lbmlmOismorPisfdso.

6S’=0S mmamsmhmm

the process identifier and a flag,
takes one of the values set or

*| background” = background \ {currend

“tfe sime process — jt ready -’m:y“: {currend
ondetErministic i you pay OlntHandlor = O ncHandler SucReidy-
to'chwe sof processes that are ASiote
ie-leernd selects the new cur- Forthisopemciontobepcrm'uible,r.he Slag>: FLAG onoq:L Py
the specification says that it processor must be running a background < Qu Ge
decamse of the static schedul-  process. This process is removed from # € background 44/7)
flag? = set = rrady = rmdv [p

sk dermines thx aferthe  background and reac and the corrgpe |
' pess Seffwane, Sut. 1390



A Cruise Controd

Slodechinds &=

CRUISE-ACT

CRUISE-MON

PEDAL-OVERRIDE amd
aot BRAKE-ON

ACTIVATE

CRUISING

twoughout PEDAL-MON - TEST-PED-DEF

gxoughout SPEED-MON - MAINTAIN-SP

twoughout SELECT-SP SELECT-SP

throughout CRUISE-MON - TEST-PED-DEF and CHECK-SP

STOP-TEST - sw0pped(TEST-PED-
STOP-MAIN mnnd(ﬂm.«m.sn
SCHED-PED - scheduleXnan!(TEST-PED-DEF).a seconds)
SCHED-MAIN - schedule (nart! (MAINTAIN-SP).n seconds)

ORrg
O N
Ary

Figure 4: Cruise State Zoom-in

~

STATEMATS,
)~ Lapry,Pne



L /0 A Teotbed

Tools Cataogue

Languages

» NonExecutable:
Z, VDM (at least 2 flavors), ASLAN, Larch, Estelle, ...

« Executable: (prototyping)
Miranda, OBJ, me too, StateChart, Caliban,D, P_Egl_og

Static Analysis
FUZZ, ASLAN + (all executable systems)

Language-tailored Environments
Raise, Larch, Gist, Statemate

—————— e
Concurrency-centered
CSP, CCS, Unity, Petri-nets, Spec, Lotos, ...

Temporally focused
L.0, ASLAN-RT, RTL, Timed CSP, Tempura, TempLog,

Theorem Provers
= e, HOL, Clio, m-EVES, B, Isabelle, OBJ,
EHDM, Gypsy, uRAL™.




g

Sample Applications tn Progress

Project Parties Problem Status
CICS Oxford PRG Transaction Released,

IBM Hursley Processing Measured (?7?)
Cleanroom IBM FSD Embedded, Released

NASA SEL Restructurer Evaluated
ZEE Tektronix Oscilloscopes On-going
Avalon/C++ |C-MU “Atomicity | Preliminary
GKS, British Standards | Graphical, Published
OA Doc. Institute Documents \
Hypertext Dexter Group Hypertext Report
Ref. Model Deamark Concepts VDM90
SXL GTE Labs Protocols In use
L.0 Belicore Protocols [n use
CASE Praxis Object Report,

Manager product

Anti-MacEnroe | Sydney Inst. Teanis Line Repoct
Device Technology Fault Detector (Occam,CSP)
Security ‘Honeywell LOCK In progress

Ford Aero. Multi-net Gateway | ”

Digital Secure VMS ”

TIS Trusted Mach ”
VIPER RSRE, Microprocessor Reports

Cambridge Tools Newsletter
Verified CLinc Microp, assembler, | Reports
Stack 0.S.
Oncology U. Wash. Cyclotron Starting
Reactor Parnas, Shutdown Reports,
Control Ontario Hydro Certification Certified
Murphy U.C. Irvine Safety Reports
SACEM French RR Train Control ICSE12

Session 2

MCC Formei Metheds Transition Study X

Tneet



”5/4 ndesds

Securrfy "ON.ULSe Gogg_" ~-NSA
Sakety
Mod 0055/56 ( 1ntesim)
%QQVJ QM/V@;';' + |
Salty- eriheat development Porece:
SekIT - goals  (uk DTT)
| ° ﬁ“«ced’y $olnd

* Generiec A
) Sechor = Framapovifiom eclic.
bpph'cafc-u
* 'pus«lplc .
° M‘l’bbnu‘ﬁmu/

{ NIST Stemdends]
Motived on

thek VIM‘{Q«"”‘V )ndua“ry com'ﬁ)‘m’a
Tvade advefege (1192) |



¥ J

ce

SOFT NEWS

Software safety focus of new British standargd

Calrm Groman, Soft News Editor

The British Defence Ministry expects
10 issUe 2 a few soltware safety scandard
this spring thug wif require the use of
fmn:‘:lrmgdw nis and machematical
verification oa ad safety-critical software.
Onk developers who prove that their
software is not safetvcritical will be
exempt from the requirements.

The standard, Mo D-5d-0055, will ban
the use of assembiy language, limit the
use of high-level languages like Ada to
wife subsets. and require the use of static
analssis. It also sets standards for project
engincers. [t will require that an engi-
neer sign ofl on the sofeware’s safety com-
pliznce, that the engineer have taken
accredited formid-methods insruction
within the past two vears, and thatan
independene engineer with similar
accreditation akso sign offon the system.
This is similar o the responsibility and
requirements enforced on yems-safery
cngineers for the overal project.

The 0055 standard will be in effect
for two vears, during which time the
Defence Ministry will revise it on the
basis of industrv's experience. The intent
isto develop a long-term standard, said
Kevin Geary. a software consulant for
the British navy's procurement depart-
ment who is working on the 005$ stan.
dard. The ministry is also working on
MoD-Std-0056, a hazard-analysis sundard
that will help sofiware developers deter-
mine where to apply formal methods
and mathematical verification, Geary
said. “Both mathematical verificagon
and hazard analysis must be performed
to provide software with acceptable risk.
Neither isadequate alone, " said Nancy
Leveson, a soft tware-safety expertand a
computerscience professor at the Uni-
versity of California at Irvine,

Pros of formal methods. The 005S stan-
dard has been called a Tandmark" by
those in the software-safety and formal-
methods communities, who argue that

:mi_g_ng’nqspomibﬂiq to software engi-

May 1969

neers, as has been tmdition in hardware
engineering, will help encourage
changesin development methods that
will help assure safe s\Mems. Safetyisin-
creasingly important because software is
becoming a greater part of critical

- SWtems like aircraft conuols, medical

devices, nuclear-power plan, earty-wamn.-
ing defense systems, and missile conurods,
thev said,

Most sof rwarcengineering standards
depened on testing, which is not abwass
rctiable, Geary qid. “The problem with
software is that vou must et agains spec-
icagons. I vou dide 't get the specifica-
HONS rigie, wee migiv not get the soft-
ware rigiw, " e said. However, mache-

—

mcforﬂmw
w&fmwy
Mﬂuﬁv&o
&se of formal methods
and mathematical
verification for
safety-critical software,

matical analysis of formal specificadons
nowtions can be used to find errors in
the specifications, Leveson said.

The increasing number of 1wols like
Zed, Vienna Development Method,
Spade. and Malpas will help make the
implementation of formal methods possi-
bie because these tools can perform
satic analyses of information flow and
semantics quickly, rather than in the
yearsrequired with manual techniques,
Geary said.

Formal methods and mathematical ver.
ification are often considered too diffi-
cult 10 apply, Geary conceded., “Thereis
a lot of unease, buc ic's quite t
that there are a It of key Mwm

come around after looking a i, " he said,
Geary cited IBM s Bridish developmeny
Center, which decided for commercia)
Teasens — not for governmene or other
outside requirements — (o yse the Zed
formal method on CICS development,
“People’s resistance is based 0n igno-
rance.” Ceary said,

Another source of resisance is the con.
fusion between formal, mashematica)
methods and madvematical correctness.

‘correct” airplame " Levesom said, A
Mare realistc and useful goalis to build
3 svstem that satisfies agiven set of func-
tonal and mission requirements while at
the same time Urving to satisfy constraines
of safety, security, and-cost,” she said.
Manry of these goals imvoke wade-offsin
scuting princities, she said,

Leveson comparedformal methods to
waditionad hardware engineering: “Engi-
neers build formal mathematical models
and then use analysis methods to deter-
mine whether the model has certain

ired properties,” she said, "which
should be the role of formai methodsin
software engincering.” (Leveson's
“Safety as a Software Qualiey™ essay in this
issue’s QualityTime. on pp- 88-89, gives
more details about this process.)

“Both software engineers and hard.
ware engineers specify design,” Geary
said. “The only difTerence is how tangible
(the product) is,” he said.

Sull, software engineers do face 2 bur-
den that their hardmcm-etpam
genenallydo not the complexity of their
product, said Martyn Thomas, chairman
of Praxis Systems, a software-engineering
consulting firm in Bath, Eagland, that
does much work in safesy inecring.
Tradidonal engineers lkeTz'dgc-build-
ers “never had techniquesfor design,

. which is more importan for software

because that's where uve complexity
comes in. It's not a sofeware problem but

mm\pkxkym,'be said.
;hdmw«cmﬁ,dnm

ORIGINAL PAGE IS
OF POOR QUALITY



DEFENCE STANDARD 00-55

“17. Specification

17.1  Safety Critical Software shall be specified using
tormal mathematical techniques. A specification of the
Safety Critical Software shall also be produced in clear
English. Both specifications #hall be included as part
of the Procurement Specification. A list of formal

mathematical specification techniques is given in
Annex L.”

ORIGINAL PAGE 1S

|<_u_s.N. Om._,:_or oom. CSP, Temporal Logic,
Lotos

/l/.’

,.:
oF
“




Figure 1 Structure of the Framework

Components -

Core Standasde
- Principies GEMERIC SECTOR APPUICATION SPECIFIC
- Torms and Concesss _ STANDARDS STAMDARDS STAMDARDS

~~~~~~~



™ME% 9(MS ~wopoy

?. \.m .dt.o.\\UQN }N\QQ

iy Yob'Sbuix ‘opg ‘wy-waiz
Hporpuz 3 P 3o )d9q o geor

byl MM ¢

SPOpr S hgfvS N Memmavy i LTy

51848 Fuiuoseas piea

sotp1ed piyy pue puodas o) uoneIIsUCWIP
A11qUirey puv 1gnop [enpisas jo uortuBodas
22uapia9 feanfjeue pue feandwa
uoisusya1dwod

TWTYnesy

Rueinsse

3pod 318M1Jo8 Jo Ajandos
suonesyipom jo LyaSau

§83201d adueudturews jo LHuFau
udisop Sutnp paydads sduvusyurews

prospuivie Aysabapur

uotjesado Sutinp paurequtewr LyuaBaun

8|0131102 yuswaFeuEHl 3A11354j5 pue sanIw
Jis jumadwiod pue pajearyowt
jusweBeuew J01UIS JO JUAUIUWOD

x.x s\f*x\ hdé

ssad01d Juawdojaadp puw Jusunfeueuws jo £3u8a3m

Kuxssuod jjs
Anxayduwod jo yueweSeuvew
uotstaard pue Kep

2905 Y SYRC

uoleIy133ds saysties (3pod) uoryequswajdun

pauyap yueweFeuvus pue WoI3eIdby ‘it6irrerep 9y ney

swiajefs duvuAUIR pue uewrni] ‘a1emijos ‘fedishyd 3o swayshs |BuIaxd jJo uolyesydads prea pue pauyop
siuduodwiod G4 19410 Jo uotyesyidads pijea pue pauyap

alem)jos 07 uonjedy1dads S | Jo uoijeisues) pijea

\ﬂ~ s§§ Anpiea

fraamsuod jpos
Anxapduios jo yusursSeuww

uoistrard puw Ayrep
__ 88Af)2e{qQ-qns

~ls *.Sm»\\

$21n1%3) £y3us jo uoned
soAjdefqQ urepy

ANadsju] painssy IDAI435(H O ({81940

$aA1309{qQ Jo Laswiling :1 ajqe],

OF POOR QuALITY

ORIGINAL PAGE 5



clarity and precision ificats ] formal mathematical

s i modelling; data flow

icati diagrams; finite state

machines/state

dlagrams, " TOUESS and IMs rumentatlon transition diagrams;
diagrams, algebra, 3 transforms, discrete structure diagrams
equations; _n,&ral language annotations;
structured natural language; subsets of
languages

abstraction; modulanty, lnfomutlon formal mathematical
modelling; data flow
diagrams; finite state
machines/state

transition dugram.

inspections; formal
design reviews
validity see next table
F ormaf S e, 14«5 . //’fa{bis Og.gfé’g:l PAge
: /,

ASCON - sty Hommiche. Ty
Z - Stf-bage aN-P'“-“ +
Laveh - Hioomes  Rovmad et +

fes, uniTy - eoneurtenc nfor gt Yeut

'51‘&4@6!4&‘ - 'Fuu.-k &Au"c

Tools

Provers «— 3 lwfs;? —Tesls  Ysable




T T TTTTTT T Tecimy

a4 g - T o ey

M'.;}Mnm
syntax and semantics; graphijcal

reprmntauon application spe

diagrams, algebra, Z transforms, discrete
equations; natural language annotations;
structured natural language; subsets of
languages

with defined | Sormal

mathematicel
modeiling; data flow
machines/state ;
transition diagrams; |
structure diagrams

management of
complexity

abstraction; modularity; information
ﬂxamg; structured design technique

formal mathematical
modelling; data flow
diagrams; finite state

machines/state
transition diagrams;
structure diagrams

| self consistency of animation — proof of iavariaats and prototyping/animation;

specification theories; semaatics for notatioas; review simulation; functional
and inspection; execution of properties — testing; formal
peototyping of selected properties; a mathematical
modelling; Fagaa
imspections; focmal
design reviews
adequate refinement . review /inspection; Fagan inspectiocns;

. testing; static analysis; experimentation; formal design reviews;

' ‘experience in the #d; diversity of tools formal proof of '
and people; use of subset of programming peogram; saeak circuit |
language; languages that can cope with anaiysis; |
different levels of abstraction walkthroughs;

functional testing
N
G
R e
tw cWw A‘Veé.

Seee,

1}

Reln eput,
See,

1)

*

Code

U

) Trowg 'ﬁru\‘tm
rh-plewwﬁn

- Luﬂ. Dfn.
|



K.4 Imtegrity of process

106  As in aay eagiaeering endeavour, the integrity of the developmeat and
management process is essential to the achievement and assurance of integrity. There is 2
requirement that the system is what it seems, that documentation is adequate and under
configuration control and that the claims made about the system are valid.

: Objective: integrity of process '
Sub-Objectives ___Techniques IEC techniques

active and effective QMS to ISO 9000; independent QA; checkli
management coatrols | automated configuration management; inspections; formal
manual configuration management; clear design reviews
delineation of authority and responsibility
for safety; adequate project planning, cost
estimation and monitoring tools and
procedures

commitment of senior | awareness campaigns; certification
management to safety | approval schemes; demonstration of

and quality economic beaefits; regulatory inspection;
liabduty; % m i
motivated and empsieacy sl kex stall (=g to BCS Safety
competent staff Critical Curricula); experience in
application domain and of software
techniques used in project; qualification to

Chartered Engineer status; status and pay;
professional 351va_m;t; certification;

safety culture

107  Note: Within this technical framework only recommendations concerning
management controls and competency of staff can be made. Other factors are importaat
and should be addressed during the project (eg safety culture considered in the selection
of contractors). Similarly, broad security issues have not been considered. It may be
possible in future versions of the Framework to reference out these objectives to a QMS

standard.



- Lt KW Liad T 10 _A‘I'A“-p - - '_‘A‘,u\u.'gﬂg_c.ne,_ . R PN

‘operational pluse The integrity caa be compromised ia thiee ways:

(i) Maintenance and modification activities are inadequate. It should be appreciated
that maintenance can be a dominant source of common mode failures in redundaat
systems. Also, maintenance will be particularly important in long lifetime systems
or systems which are expected to evolve.

(ii) Security of the embedded code is violated. General consideration of security are
outside the scope of this framework, for further discussion see the publicatiens from
the DTI Commercial Security Centre [9).

(iii) Failures in the system violate the stated conditions under which the integrity is
ensured. The detection, toleration and management of such changes are addressed
in the section on validity ( K.2) and are not considered further in this sectioa.

109 The need for maintenance of the hardware and software will affect the design of
the software structure and fault handling, reporting and recovery mechanisms. This is
addressed in section K.2.

Objective: integrity of sofiware maintained during operation
[ Seab-Obioct

gectives Techniques I IEC techniques |

imbegrity of maintenance planning aad standards;
maintenance process manual configuration management;
automated configuration management;
authorisation peocedures; availability of
qualified stafl; development facilities;
Quality Management Systemns

integrity of application of design standards and |
modifications development standards to modifications;
regression testing; procedures for assessing

imEact and imErta.nce of chanse;
ularity and struc uring

securityé software robust storage media; securit:\:i error correcting codes ,

code unchanged administrative access controls; passwords;
safety critical data not changed by

operational stafl; encryption and other

fault tolerant techniques
"




-

comprehensioa

i

' -

.Y /A -t A

timely provisioa o ! documeatation; visible
lifecycle; sa:.u[actwa of other framework

objectives

empirical and analytnc
evidence

See ‘satisfaction of specification’. In
addition require: proof deliverable;
appropnate v&v techmqua —d

testi ' doc:ume'n%“-L
reviews; evaluation of operatmg experience
of identical and similar systems; use of
proven or certificated components

Fagan inspections;
formal design reviews;
boundary value
analysis; error
guessing; error
seeding; performamce
modelling; simulation,
test coverage;
functional testing

recognition of residual | claim limits; design guidance (e.g. ‘no
doubt single failure criterion’) on system level
diversity
recognitica of W‘Md checklists; Fagan
failibdity CEARALONG. — &V, ISA; divecrse proof mapedaou; formad
chedker: diversity of other tools; robast | design reviews; fauit
ﬁh fault detection and containment; | detection and
QA amd technical review ) diagnosis
demonstration to mvdmncdchAvma checklists; Fagan
| second or third parties | QMS; liason with customer QMS; nspecttons, formal
compliance with [Tealth and Safety at design reviews
Wock Act and other relevant legisiation
and standards; safety recocd log or
accomplishment summary; certification of
l P people, procedures and components
stem of accepted mat ical | em or | formal mathematical
msomng culus; empirical evidence; common modeiling
languge
(o)
o,,'?/G//y‘q
%‘ Ry Ge
Ql‘( L



/ﬁc& SpecTra Screen Mock-up

2/

y
AN

Hl

e
i
)

e
i
hh ?
]

|

See ; Prers Ay Permedia,
| Qonic. , Dec. CERM




Tabel:: books

type:: declarationm

date:: Jun 14 10:05 1990
author:: greene

Contents:: books is set of book -

Figure 7 Contents of the Decl node labeled books

Besides the one-of links (denoting the set membership relation), there are is-of -
type and depends-upon links (v is-of -type ¢ when v is a state variable and ¢ is its
type and Decl dl/ depends-on Decl d2 when the declaration 42 mentions the formal
entity declared in dJ). These links are by default invisible (to cut down on the clutter) but
can be displayed at the user’s request. For example, a user can click on a transition node (a
node containing the eatry and exit conditions of an ASLAN transition) and ask for all of
the nodes in the specificatioa oa which this transition depends. SpecTra then highlights all
of the nodes in the specificationa which can be reached by starting at the clicked upon node
and following depends -upoa links. Thus the graphical representation of an ASLAN
specification is easier 10 browse than the textual representation. SpecTra is also able to
highlight all the nodes which depead wpoa a user specified sode. This eases the task of
specification modifcation 2s users caa be pointed w0 all the parcs of the specification which
will be affected by a change.

book vs. copy P. L
equats notions ;
constsyent vith inforsmal req

Figure 8 Informal requirements linked to formal :peajﬁcédo)n

Using shese sew node and links types, formal ASLAN specifications can be entered and
browsed within Germ. Additionally, /P/A structured informal requirements may coexist
in the daabase and these informal notioas may be linked to the portion of the formal spec-
ification which is their formalization. For example, in the process of coming up with re-
quirements for the library database, the following issue arose. Should the concepts book
and copy be identified? Arguments (pro and con) were given and it was decided that these
two notions should be distinguished. The position taken was that a book was something
abstract and that a copy was an instance of that abstraction. The links between this posi-

MCC Bttewsiona: gy P "ﬁ"!w : /



Mee Byfasing Ammﬁm

WM R R Ty
! t1 i sl c
2 al
% I /
3 t2
1: t1 regquest ml
C 2: t1 acquire mi
3: t2 request ai
b (o | 4: t1 regquest m2
t3 [} !: t1 acquire m2
7: tl wait 1 ¢
10: t3 acquire mi
9: t3 signal mi ¢
s Bl 18: t1 swake mi ¢
s , ={11: t3 release a!
;
4

Capyright 1308 WCC
Veod Jul § 15:34:15 1%9¢

[ 8eady ) [ Bese )
belay o Output Oprlnt

T W

5 Copyright MCC 1988 ] R —
4 ‘ o .~ o
‘ cerveat: 5: t3 request mi ctoy te sscsnde: L
e S Mrection Cforverd  origia Courreat Mevemsat O aowe
A Ehtﬂ'ﬂ‘[l] 1 C 118
Steps (1) 1 [ mE
CREE D) w1 1 ] 10
! ; ; End Actiom CIt” Mletl-cmwsm mc- Flash Son

mmwﬁm 015
“Process thrssds) SPee.

Rigy

%P#LP



Figure 2 Relationship of the risk and safety
’ integrity levels to the Safety Litscycie Model

Hazard
Analysis

Risk and Safety
Integrity Levels:

: - Influencing Factors
Risk 9
Assessment | ™ | . Legislation

¢ ' - International

Standards
« National Standards
- Safety Regulatory
Authority Guidelines

i OR/
Designation of OF g
Safety Related P“Q';:gw%
Systems | FMm

) \

' | R

‘ Validation Design and Verification
,- Planning Implementation | <+——

& Y
| Safety I e
FM - ~-- | Validation - Systet } -
l 7 ]
| : , —»-! Decommissioning - m“
Operation and | } Litecychs
.| maintenance —{ Retro - FR }———=




Cone tusyous

Sale T Coule be useo + de s,

5“?” ort ne eded £
9Stm. deyel, f ﬁm#w,,,éy

Py
SPace Wm ) 09

o

ﬁrq/ I/minary lésc.s.sm{ -—FEM
o E vidence for cAQe_r‘-/w Nigo
L858 Sw, &M, 7SE Sigh, %
FM 29 - \?pvmjcp /!r/od /99/
o Educatern basis | |
SEL MSE, tertfs, netwer 9 roup:

¢ T'oo/ enwmnmwﬁ“s Wweail

m;“"z'>grm.j CASE



NCC Formal MeHods Proyecs

| _
/) 7 ransit Sty
QUrVeY , ASseas

Exper}M
Lducoh o

14/ omamyﬂm:, ined. MASA, MITEE,

Bocewot

1-) Opecra.
/&perfua‘ 73/a1‘14vm.

NOJ“ “Spece. ,
L'H«-ﬁnccu, dCPW/‘““«

"Exeecutable Specs”
ko e S S W Pres.

h( 6nJ MM



MCC

Formal Methods Transition Study

Interest is growing worldwide in the application of
precise mathematical techniques to the specification
and design of hardware and software systems. In
fact, European successes in this area, commonly
called Formal Methods, have already led govern-
ments to require that the techniques be used for safe-
ty critical systems.

MCC's Software Technology Program proposes a one-
year in-depth study of Formal Methods techniques
and the tools that support them. Drawing upon sig-
nificant research experience at MCC, we will assess
the state of the art worldwide and determine the im-
plications for a variety of North American industries.

This proposal describes the background, rationale,
and contents of the funded study, including its time-
line and deliverables. Our goal is to provide execu-
tives with the information they need to ascertain
their own companies’ requirements in the Formal
Methods area. For those whose interest calls for fur-
ther technology development, this study will also es-
tablish a plan for appropriate research and develop-
ment work. '

Background, Rationale: Formal Methods, a body
of techniques supported by powerful reasoning tools,

offer rigorous and effective ways to model, design,
and analyze systems. Several research groups, pri-
marily in Europe, have generated specification, im-
plementation, and verification techniques for a broad
class of systems, and have cast the techniques into in-
dustrially usable forms. Their affiliated companies
have already employed several of these techniques in
the development of real-world hardware and soft-
ware applications. Attention by governments and in-
dustry is increasing as well, due in large part to a
growing concern with the high risks of faulty comput-
er control in systems critical to life and property. In-
deed, certain combinations of Formal Methods are
now seen as necessary for ensuring that these sys-
tems meet existing regulations and standards, or
that they avoid legal liability repercussions. And
there are other, broader applications for these tech-
niques as well; in particular, they can help circum-
vent many of the expensive problems of general soft-

Call for Participation
April, 1990

ware development practices, such as late discovery of
errors and poor communication among end users, de-
signers, specifiers, and implementors.

MCC is in a unique position to build on the progress
in Formal Methods. Even today, a number of tools
and techniques developed in MCC research laborato-
ries can be brought to bear. For example, Software’s
issue-based design methodology can be integrated
with Advanced Computing Technology’s declarative
language technology and with externally developed
Formal Methods-based toolsets. MCC researchers
have proposed several novel ways in which to exploit
MCC-developed techniques to advance Formal Meth-
ods research. Moreover, researchers in the Software
Technology and Computer-aided Design programs
are investigating CoDesign—design and analysis
techniques spanning both hardware and software. So
that we may capitalize on worthwhile outside devel-
opments as they occur, MCC's International Liaison
Office closely monitors the maturation of Formal
Methods techniques in Europe and gauges industrial
and government interest in both Europe and the U.S.
At the same time, MCC's experiences with technolo-
gy transfer continue to give us bountiful insights into
the problems and operations of MCC’s sponsoring or-
ganizations.

Content of Study: We propose to study Formal
Methods issues as they directly relate to North Amer-
ican companies. First, we will determine how Formal
Methods can help these companies meet demands for
higher quality, possibly regulated software-intensive
systems. Second, we will pinpoint how the companies
can exploit Formal Methods in current environments
for more productive software development processes.

The study will explore the issues and topics that per-
tain to a full-scale Formal Methods research effort at
MCC, including:

Fundamental concepts of Formal Methods—what is a
formal method, and how does it work?

Training and instructional materigl—sample course
outlines, evaluation of course offerings.



Modes of using formal methods—specification, verifi-
cation, documentation, refinement; integration
with object-oriented and other widespread ap-
proaches; consistency of artifacts from require-
ments through code.

Survey of major applications—summaries of Formal
Methods projects to date, interpretations of col-
lected project data, evaluation of successes and
failures, derived guidelines for applications.

Tools survey—catalog of editors, syntactic/semantic
checkers, theorem provers, and other tools; MCC
experiments with North American and European
toolsets; assessment of state of toolsets.

Models of formal-based software development—injec-
tion of techniques into standard productivity,
risk, and QA models; scenarios of future develop-
ment processes.

Regulatory and legal trends in safety and security—
the high-integrity market sector; research fund-
ing patterns (U.S., Europe, and Japan); forecasts
of error and development costs, adoption pat-
terns, optimistic and pessimistic scenarios.

Transitional tips—what to teach, to whom, and fol-
low-through; projects to try; pitfalls, motivation,
and so on.

Experimental results—results of using MCC technol-
ogy and personnel, along with imported tools, in-
structors, consultants, and other studies, to ap-
ply Formal Methods to industrially relevant
problems. These experiments will illustrate
many of the above topics.

Research needs and strategy.

1 D : The proposed study
will be conducted from September 1, 1990, to Septem-
ber 30, 1991. At the end of this period, participants
will receive a comprehensive report covering the top-
ics outlined above, together with video overviews,
tool demonstrations, and thorough accounts of exper-
imental protocols and results. Drafts of the report’s
topics will be available at quarterly intervals; mid-
term and final reviews and information sessions will
occur at the MCC site; and at least one formal inter-

action will be designed according to the specific inter-
ests of each participant (within the domain expertise
limits of MCC personnel).

The study in its entirety will be proprietary to partic-
ipants for one year, after which MCC may distribute
it more widely. Selected sections reporting experi-
mental results and new insights of interest to the re-
search community may be published as technical re-
ports and papers during the course of the study, both
to further the field and to establish the MCC Formal
Methods initiative in the research community.

Costs: Costs for the study will be targeted to ten
participants at $60,000 each. Membership is open to
all MCC shareholders and associates; non-member
companies can opt to participate in MCC for the one-
year study period only, paying a special Project Asso-
ciate fee of $7,500 in addition to the study participa-
tion fee. Should there be more than ten participants,
additional personnel will be added to increase the
study’s scope and depth.

A full-scale, multiple-year Formal Methods initiative
will be proposed in mid-1991. While the study’s re-
port will motivate many of the initiative’s activities,
it will not constitute a full definition of those activi-
ties. Study participants have no commitment beyond
September 1, 1991; however, if a participant does
elect membership in the initiative, it may deduct
$25,000 from the cost, of membership over the first
two years.

Personnel: The MCC researchers who will conduct
the study are broadly experienced in the theory and
application of Formal Methods techniques and tools.
They are also experts in tracking and forecasting
technology trends. The study coordinator, Dr. Susan
Gerhart, has led a major U.S. formal verification
project and participates in international Formal
Methods strategic activities. Other project members
are experts in a variety of tools (already assembled at
MCC), techniques, and theories and have applied
them to industrially interesting problems. This
unique group has been cooperating for a year and will
be complemented by consulting expertise from out-
side MCC as well as from related MCC projects.

For more tnﬁrmdton. contact:
Susan Gerhart Ted Ralston
(518) 338-3403 (513) 338-3847
gerhari@mec.com ralston@mcc.com

Microelectronios and Computer Technology Corporation
3500 W. Baloonse Center Drive
Avustin, Texas 78788




Issues Related to Ada 9X

John McHugh
Computational Logic, Inc.



Recent Ada 9X
Activities

John McHugh

Baldwin / McHugh Associates
Durham, North Carolina

8 November 1980

Ada 9X Activities

‘ OVERVIEW'

« Ada 9X

« The 9X process

» lIssues for Critical
Systems

Ada 9X Activities

Page 1



ISO Standards such as Ada must be
reviewed for possible revision every 10
years. The review process can

- Leave the standard unchanged
« Withdraw the standard
- Initiate a revision process

Ada 83 Is undergoing a revision. The new
language will be known as Ada 9X.

« The current expected value for X is 3.

Ada 9X Activities

|The Ada 9X Processl

The Ada 9X process is being managed by
the Air Force out of Eglin AFB, Fla. The
project manager Is Christine Anderson.

« Revision requests submitted 88-89
Requirements workshops 89-90
Distilled to revision issues by IDA
Requirements document - drafts fall 90
Inputs still coming from interest groups
Mapping contractor (Intermetrics) will map
requirements into revised language

Ada 9X Activities

Page 2



|My Subjective View of Processl

The following represent my own , distinctly
minority view of the process.

* The ground rule that calls for upward
compatibility at all costs does more harm
than good as it guarantees a more complex
language.

+ As Ada tries to be all things to all people,
dialects and subsets will become necessary.

« A rational approach is probably not possible.
Without it, Ada 9X will not be a substantial
improvement over Ada 83 and Ada will
eventually collapse under its own weight,

Ada 9X Activities

lAda’ 9 X and Critical Systems I

As a part of the revision that Ada is
undergoing , the trusted systems
community has raised a number of
issues. They are summarized in the
following slides.

Ada 9X Activities

Page 3



| Requirement AI

IDENTIFY AND JUSTIFY ALL ELEMENTS OF THE
STANDARD THAT PERMIT UNPREDICTABLE
PROGRAM BEHAVIOR.

e.g., Program blockage
Integer (1.5) 2 Integer(1.5)

INTENT IS TO ELIMINATE WHERE POSSIBLE
AND FORCE ANALYSIS AND COST BENEFIT
DECISION ELSEWHERE.

Ada 9X Activities

|REQUIREMENT A -continuedl

1) Eliminate most erroneous cases

2) Eliminate "incorrect order dependency”—-define
order-dependent semantics

3) Define undesirable implementation dependency (UID)
4) UID has defined effect, not cause for "program error”

5) Implementations shall attempt to detect remalnlng
erroneous and UID cases

6) Specific cases of undefined variables:
a. Majority - URG position on LHS usage
b. Minority - catch all usage

Ada 9X Activities

Page 4



REQUIREMENT B|

EXPOSE IMPLEMENTATION CHOICES
1) Language choices (LRM alternatives)
2) Implementation strategy (storage management,
scheduling, etc.)
Static choices
Dynamic choices
What can user control?

How can information be shared with others? With
tools?

Choices include:

a) Parameter passage

b) Optimization

¢) Heap vs stack vs ...storage management

Ada 9X Activities

REQUIREMENT C

ALLOW USERS TO CONTROL
IMPLEMENTATION TECHNIQUES

Certaln implementation cholces lead to
explosive growth in possible execution
behaviors.

Implementations must honor-or reject with

warnings-user directives for items such as

parameter passing mechanisms, orders of
evaluations, etc.

This is analogous to the representatian
specification for data.

Ada 9X Activities

Page 5



IREQUIREMENT DI

IMPLEMENTATIONS SHALL ATTEMPT COMPILE
OR RUNTIME ANALYSIS FOR KNOWABLE
INSTANCES OF UNSOUND PROGRAMMING AND
ISSUE WARNINGS/EXCEPTIONS AS
APPROPRIATE.

- Aliasing

- Unsynchronized sharing
- Uninitialized variables

- Ete.

Ada 9X Activities

|REQUIREMENT EI

PROGRAM BEHAVIOR TO BE DEFINED OR
PREDICTABLE IN THE FACE OF OPTIMIZATION

Wae call for turther study on the following
- Canonical order of evaluation vs radical
optimizations
- Exceptions
- Side effects
- Possibility of pragma control

Ada 9X Activities

Page 6



]REQUIREMENT FI

FORMAL STATIC SEMANTICS AS PART OF
ADA 9X STANDARD

The formal definition to be accompanied by tools that

facllitate use for answering questions about the legality
and meaning of programs.

While this does not necessarily change the language,
development of the definition and tools may contribute
to language changes.

N.B. Parameterize formal definition for implementation
decisions and architecture/environment.

Ada 9X Activities

IREQUIREMENT GI

DYNAMIC SEMANTICS AS ONGOING EFFORT WITH
AIM OF INCORPORATIONS IN NEXT STANDARD.

This area has enough uncertainty to keep it off the Ada
9X critical reth. On the other hand, development ot
portions of the dynamic semantics as part of the Ada 9X
effort should aid In evaluating and understanding
proposed language changes.

N.B. Parameterize formal definition for implementation
decisions and architecture/environment.

Ada 9X Activities

Page 7



REQUIREMENT H

ASSERTIONS

MAJORITY
1) Need dynamic semantics for assertions
to be useful for proof
2) Suitable form not known
- Extend Ada expressions
- Ada vs spec functions
- Ete.
. Wait, but work on issue
MINORITY -
1) Anna exists
2) Annais better than nothing
. Use Anna for now :

DON'T PRECLUDE LATER
CHOICE/DECISION

Ada 9X A;tivities

' |Mixed Resultsl

Requirements A, B, and D are Iargély
reflected In the Requirements Document

Requirements C and H have been largely
ignored.

Requirement E has resulted in special
consideration being given to the critical
systems community.

Requirements F and G have been
completely rejected, but ...

Ada 9X Activities

Page 8



|Language Precision Team l

PRDA Issued by Ada 9X project last
spring.
« Supports Ada 9X mapping team

by providing formal analysis of
selected language topics

"Creeping formalism" approach to
demonstrating utility of formal

methodology

« May have some influence on Ada 9X
language

A team led by ORA was issued a contract
during the last days of FY 89.

Ada 9X Activities

|Research Issues and Effortsl

The language precision team will work with
Intermetrics to model specific aspects of the Ada
language where the application of formal
techniques appears to have promise. These
include optimization and tasking. While the project
Is probably worth while, the approach may be less
than satisfactory for a number of reasons.

Ada 9X Activities

Page 9



\

IF eatures Interact I

In isolation, most Ada features are
innocuous. It is in combination that
they cause problems. The LPT
approach risks ignoring the

interactions
» Overloading
» Separate Compilation
+ Private types
- Signals and handlers
 Tasking
« Optimization and code generation

Ada 9X Activities

|Consider Optimizationl

Optimization and code generation are difficult to
separate. One man's optimization strategy Is
another's code generation paradigm.

« Ada has no explicit low level parallelism. Most
modern architectures do, even if it is only a
pipeline or a coprocessor.

« Array and vector processors have primitives
that are of a higher level than the Ada
primitives that they implement.

 The ability of the programmer to explicitly
handle exceptions from predefined operations
makes visible implementation detalls that are
better hidden.

Ada 9X Activities

Page 10



4 Sranmmanssasnastsbnnasiannssn asn, e,

‘[Reconsider Optimizatn

The Interaction of exception handling, global data,
and separate compllation with low level parallelism
makes code generation difficuit.

- Reordering exception raising operations can
create unexpected program states or even turn a
legal program into an errongous one.

- If the exception is unhandled, this may not
matter.

. If the exception is handled in another
compilation, the dependencies are difficult to
track.

. Without global analysis, the wrong choices are
sure to be made sometimes.

Ada 9X Activities

|Meanwhile back at Intermetricsl

The first Ada 9X Mapping Issues document
produced by Intermetrics addresses no issues
that are of specific interest to the critical systems

community. The issues addressed include:
- Type extensions and polymorphism

- Pointers to static objects

. Changes In visibility rules for operators

. otc.

Ada 9X Activities

Page 11

A



:J(‘ |

What lies Ahead?

The process will inexorably wend its way
towards a revised Ada. While some of the
warts of the present language may be
removed in the process, it is certain that
others will spring up to take their place.

The process is under the control of those with
L li f§ . acertain vested interest in the status quo.

What is lacking is a long term, radical view of
what ought to be. If Ada 9X, like Ada 83 fails
to serve the needs of portions of the
community, where can they go? What
alternatives do they have?

Ada 9X Activities

Page 12

s






